首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

你们能推荐一个最适合这个数据集的模型吗?r平方估计很低。

对于这个问答内容,我可以给出以下完善且全面的答案:

针对数据集选择模型的问题,首先需要了解数据集的特点和目标。根据数据集的特点和目标,可以选择不同类型的模型进行建模和预测。

在机器学习领域,常见的模型包括线性回归、决策树、支持向量机、神经网络等。下面我将针对这些模型进行简要介绍:

  1. 线性回归模型:
    • 概念:线性回归模型通过拟合数据集中的线性关系来进行预测和回归分析。
    • 优势:简单易懂,计算效率高。
    • 应用场景:适用于预测连续型变量,如房价预测、销售预测等。
    • 推荐的腾讯云相关产品:腾讯云机器学习平台(https://cloud.tencent.com/product/tiia)
  • 决策树模型:
    • 概念:决策树模型通过构建树形结构来进行分类和回归分析。
    • 优势:易于理解和解释,能够处理非线性关系。
    • 应用场景:适用于分类和回归问题,如客户流失预测、信用评估等。
    • 推荐的腾讯云相关产品:腾讯云机器学习平台(https://cloud.tencent.com/product/tiia)
  • 支持向量机模型:
    • 概念:支持向量机模型通过构建超平面来进行分类和回归分析。
    • 优势:能够处理高维数据和非线性关系,具有较强的泛化能力。
    • 应用场景:适用于分类和回归问题,如文本分类、图像识别等。
    • 推荐的腾讯云相关产品:腾讯云机器学习平台(https://cloud.tencent.com/product/tiia)
  • 神经网络模型:
    • 概念:神经网络模型通过模拟人脑神经元的连接方式来进行学习和预测。
    • 优势:能够处理复杂的非线性关系,具有较强的学习能力。
    • 应用场景:适用于图像识别、自然语言处理等领域。
    • 推荐的腾讯云相关产品:腾讯云机器学习平台(https://cloud.tencent.com/product/tiia)

对于r平方估计很低的情况,可能是模型拟合效果不佳。可以尝试以下方法来改进模型的性能:

  1. 数据预处理:对数据进行清洗、归一化、特征选择等处理,以提高模型的拟合效果。
  2. 特征工程:通过构建新的特征或组合特征,提取更有价值的信息,改善模型的表现。
  3. 模型调参:调整模型的超参数,如学习率、正则化参数等,以获得更好的拟合效果。
  4. 尝试其他模型:根据数据集的特点,尝试其他适合的模型,以提高预测准确度。

希望以上回答能够满足您的需求。如果您有其他问题,欢迎继续提问。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

教程 | 如何为单变量模型选择最佳的回归函数

只要看 R²、SSE 等数据吗? 可是由于模型不同,因此对模型的解释(平方、根等)也会不同,这不是个问题吗? 问题的第二部分很容易回答。首先,找到最适合数据的模型,然后解释其结果。...为了进行练习并获得更好的体验,我写了一个简单的 ShinyApp。我们可以通过它用不同的模型训练不同的数据集。在训练过程中注意参数的变化情况,可以更好地评估简单的线性模型,从而对模型进行选择。...此外,你可以从 GitHub 复制该程序并将其作为数据框架。 ? 对单变量模型应用调整后的 R2 如果只使用一个输入变量,则调整后的 R2 值可以指出模型的执行情况。...因此,只需要比较相同数据集应用在不同模型的指标,无需在不同数据集间进行比较。 通常情况下,很少用到 SSE 在阅读这一部分之前,我们先明确 SSE 的含义。...我们不希望残差在零的附近变化 我在此试图用线性函数对一个多项式数据集进行预测。对残差进行分析,可以显示模型的偏差是向上的还是向下的。 当 50 < x < 100 时,残差值大于零。

1.3K90

100+数据科学面试问题和答案总结 - 基础知识和数据分析

在马尔可夫链中,任何状态的未来概率只取决于当前状态。 上图表示了一个马尔可夫链模型,其中每个步骤都有一个输出,只依赖于当前状态。 例如文字推荐。...对于一个好的模型,MSE值应该很低。这意味着实际输出值和预测输出值之间的误差应该很低。 11、如何处理不平衡的二元分类? 在进行二分类时,如果数据集不平衡,仅使用R2评分无法正确预测模型的精度。...假设有一个机场安检如果一个真正有威胁的客户被机场模型标记为无威胁,陪审团或法官决定释放犯罪的罪犯都是这种情况 51、你能举出一些假阳性和假阴性同样重要的例子吗?...52、您能解释一下验证集和测试集之间的区别吗? 验证集可以被认为是训练集的一部分,因为它用于参数选择和避免模型的过拟合。测试集用于测试或评估训练好的机器学习模型的性能。...主要用于预测目标和估计模型在实践中实现的准确性的背景。 交叉验证的目标是定义一个数据集来在训练阶段测试模型(即验证数据集),以限制过拟合等问题,并深入了解模型将如何推广到一个独立的数据集。

98021
  • Python中线性回归的完整指南

    因此理解这个简单的模型将为继续采用更复杂的方法奠定良好的基础。 线性回归非常适合回答以下问题: 2个变量之间是否存在关系? 关系有多强? 哪个变量贡献最大? 如何准确估计每个变量的影响?...能准确预测目标吗? 这种关系是线性的吗?(杜) 有互动效应吗? 估计系数 假设只有一个变量和一个目标。然后线性回归表示为: ?...此外平方误差会对较大的差异造成不利影响,因此最小化平方误差会“保证”更好的模型。 看一下图表以便更好地理解。 ? 线性拟合数据集 在上图中,红点是真实数据,蓝线是线性模型。...R²配方 第一个误差度量很容易理解:残差越小,模型越适合数据(在这种情况下,数据越接近线性关系)。 对于R²度量,它测量目标中可变性的比例,可以使用特征X来解释。...添加互动 在线性模型中具有多个预测变量意味着某些预测变量可能对其他预测变量产生影响。 例如想要预测一个人的工资,了解她的年龄和在学校度过的年数。当然这个人年龄越大,这个人在学校度过的时间就越多。

    4.6K20

    突破最强算法模型,回归!!

    模型评估: 使用适当的评估指标(如均方误差、R平方等)来评估模型性能,确保选择的方法在测试数据上也表现良好。...在实际应用中,最佳的处理方法取决于数据的性质以及缺失值的分布和原因。最好的做法是综合考虑数据集的特点,选择最适合问题的缺失数据处理方法。...可能有几种解释: 变量对响应变量没有显著影响: 这个变量在这个模型中可能不是一个重要的预测因子。 样本量不足: p值受样本量影响,较小的样本可能导致p值较高。...使用方差膨胀因子(VIF)是解决这个问题的正确方法吗?” 大壮答:当我们在进行多元回归分析时,多重共线性是一个需要关注的问题。...公式: R^2 = 1 - \frac{\text{残差平方和}}{\text{总平方和}} 关键点: R²为1表示模型完美拟合,为0表示模型无法解释目标变量的变异性。

    27610

    从决策树到GBDT梯度提升决策树和XGBoost

    输出Y为连续变量,将输入划分为M个区域,分别为R1,R2,…,RM,每个区域的输出值分别为:c1,c2,…,cm则回归树模型可表示为: 接下来可以使用平方误差 来表示训练数据的预测误差...训练数据集所在的输入空间中,递归地将每个区域划分为两个子区域并决定每个子区域上输出值,构建二叉决策树。 1....提升树的核心就在于,每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量。比如A的真实年龄是18岁,但第一棵树的预测年龄是12岁,差了6岁,即残差为6岁。...我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),xgboost在训练之前,预先对数据进行了排序,然后保存为block结构,后面的迭代中重复地使用这个结构,大大减小计算量...当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以xgboost还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点。

    1.2K31

    数据科学家需要了解的45个回归问题测试题(附答案)

    当假设空间集比较小的时候,它具有更高的偏差和更低的方差,所以对于较小的假设空间,不太能找到合适的假设去拟合数据,这正是欠拟合。...以上皆非 答案:A 每次加一个特征值后,R平方总是增加或维持不变。但对于调整过的R平方并非如此,如果增加了,这个特征值是有显著性的。...19 下面的可视化图显示了对于相同训练数据的三种不同模型的拟合情况(蓝线)。从中你能得到怎样的结论? 1. 第一个模型的训练误差比第二个和第三个模型大。 2....对于这个回归问题,第三个模型是最好的,因为其训练误差最小。 3. 第二个模型鲁棒性比第一个和第三个模型更强,因为它对于不可见部分数据的表现更好 4....另一方面,如果我们有大量观察数据,即便用非常复杂的模型,也很难过度拟合,因为我们输入的是高密度观察数据。 35 假设您已在数据集上拟合了一个复杂的回归模型。

    1.8K20

    想去机器学习初创公司做数据科学家?这里有最常问的40道面试题

    例如,“FREE”这个词在以前的垃圾邮件使用的概率就是似然估计。边际似然估计就是,“FREE”这个词在任何消息中使用的概率。 问7:你正在一个时间序列数据集上工作。经理要求你建立一个高精度的模型。...因此,我们知道了如果我们有一个满足线性假设的数据集,一个线性回归模型能提供强大的预测。 问8:给你分配了一个新的项目,是关于帮助食品配送公司节省更多的钱。问题是,公司的送餐队伍没办法准时送餐。...可以用于当一个算法在数据集中的所有变量里很难寻找到有意义信号的时候。 问10:给你一个数据集。该数据集包含很多变量,你知道其中一些是高度相关的。经理要求你用PCA。你会先去掉相关的变量吗?为什么?...为了改进,你去掉截距项,模型R的平方从0.3变为0.8。这是否可能?怎样才能达到这个结果? 答:是的,这有可能。我们需要了解截距项在回归模型里的意义。截距项显示模型预测没有任何自变量,比如平均预测。...例如:一个基因突变数据集可能会得到一个较低的校正R²但仍提供了相当不错的预测,但相较于股票市场,较低的校正R²只能说明模型不好。

    72650

    【视频】R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险|数据分享|附代码数据

    成本函数成本函数是用于计算误差的数学公式,它是我们的预测值和实际值之间的差异。它只是衡量模型在估计 x 和 y 之间关系的能力方面的错误程度。当我们考虑成本函数时,首先想到的是经典的平方误差函数。 ...但是使用我们的新 sigmoid 函数,我们没有平方误差的正二阶导数。这意味着它是非凸函数。我们不想陷入局部最优,因此我们定义了一个新的成本函数: 这称为交叉熵成本。...R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险本文的目的是完成一个逻辑回归分析。使你对分析步骤和思维过程有一个基本概念。...她问你哪个阈值最适合为这个项目选择病人。根据ROC曲线,你会向医生推荐哪个阈值?为什么?...、决策树、随机森林分析心脏病数据并高维可视化R语言基于树的方法:决策树,随机森林,Bagging,增强树R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测spss modeler用决策树神经网络预测

    1K00

    【视频】R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险|数据分享

    成本函数成本函数是用于计算误差的数学公式,它是我们的预测值和实际值之间的差异。它只是衡量模型在估计 x 和 y 之间关系的能力方面的错误程度。当我们考虑成本函数时,首先想到的是经典的平方误差函数。 ...但是使用我们的新 sigmoid 函数,我们没有平方误差的正二阶导数。这意味着它是非凸函数。我们不想陷入局部最优,因此我们定义了一个新的成本函数: 这称为交叉熵成本。...R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险本文的目的是完成一个逻辑回归分析。使你对分析步骤和思维过程有一个基本概念。...她问你哪个阈值最适合为这个项目选择病人。根据ROC曲线,你会向医生推荐哪个阈值?为什么?...、决策树、随机森林分析心脏病数据并高维可视化R语言基于树的方法:决策树,随机森林,Bagging,增强树R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测spss modeler用决策树神经网络预测

    1.4K20

    【视频】R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险|数据分享|附代码数据

    成本函数成本函数是用于计算误差的数学公式,它是我们的预测值和实际值之间的差异。它只是衡量模型在估计 x 和 y 之间关系的能力方面的错误程度。当我们考虑成本函数时,首先想到的是经典的平方误差函数。 ...但是使用我们的新 sigmoid 函数,我们没有平方误差的正二阶导数。这意味着它是非凸函数。我们不想陷入局部最优,因此我们定义了一个新的成本函数: 这称为交叉熵成本。...R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险本文的目的是完成一个逻辑回归分析。使你对分析步骤和思维过程有一个基本概念。...她问你哪个阈值最适合为这个项目选择病人。根据ROC曲线,你会向医生推荐哪个阈值?为什么?...、决策树、随机森林分析心脏病数据并高维可视化R语言基于树的方法:决策树,随机森林,Bagging,增强树R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测spss modeler用决策树神经网络预测

    97500

    【视频】R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险|数据分享|附代码数据

    成本函数成本函数是用于计算误差的数学公式,它是我们的预测值和实际值之间的差异。它只是衡量模型在估计 x 和 y 之间关系的能力方面的错误程度。当我们考虑成本函数时,首先想到的是经典的平方误差函数。 ...但是使用我们的新 sigmoid 函数,我们没有平方误差的正二阶导数。这意味着它是非凸函数。我们不想陷入局部最优,因此我们定义了一个新的成本函数: 这称为交叉熵成本。...R语言逻辑回归(Logistic回归)模型分类预测病人冠心病风险本文的目的是完成一个逻辑回归分析。使你对分析步骤和思维过程有一个基本概念。...她问你哪个阈值最适合为这个项目选择病人。根据ROC曲线,你会向医生推荐哪个阈值?为什么?...、决策树、随机森林分析心脏病数据并高维可视化R语言基于树的方法:决策树,随机森林,Bagging,增强树R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测spss modeler用决策树神经网络预测

    94600

    R语言用线性回归模型预测空气质量臭氧数据

    在这里,我将讨论使用空气质量数据集的普通最小二乘回归示例解释线性模型时最重要的方面。...空气质量数据集 空气质量数据集包含对在纽约获得的以下四个空气质量指标的154次测量: 臭氧:平均臭氧水平,以十亿分之一为单位 Solar.R:太阳辐射  风:平均风速,每小时英里 温度:每日最高温度,以华氏度为单位...Temp")) 数据探索和准备 预测任务如下:根据太阳辐射,风速和温度,我们可以预测臭氧水平吗?...它定义为估计值与观察到的结果之间的相关性的平方: ## [1] 0.5924073 与[-1,1] [-1,1]中的相关性相反,R平方在[0,1] [0,1]中。...调整后的R平方 调整后的R平方值会根据模型的复杂性来调整R平方: 其中nn是观察数,pp是特征数。

    1.9K00

    吴恩达机器学习笔记7-代价函数的定义Cost function

    “上次课讲了机器学习的模型表示,讲了一个线性模型的例子,那怎样在可能的拟合直线里选择一条最合适的呢?有没有数学的方法让这个直线合适还是不合适变得可以量化呢?这就要说代价函数了。”...从一元线性模型看代价函数的引入; 代价函数的数学定义。 2.1从一元线性模型看代价函数的引入 上一节课,卖房子的那个训练集,我们说用一个直线的方程来拟合它们。如下图,在下面假设的直线方程。 ?...针对那一堆训练集里面x^{(i)} 对应的y^{(i)}是已知的,如果把训练集中的每个x^{(i)}入我们用于拟合的那个直线的公式 中都可以得到一个估计值 , 用这个估计值和实际值之差的平方,可以衡量我们估计值和实际值的偏差情况...我们如果把所有m个偏差的平方给它们求和,就会得到一个数,这个数呢,可以衡量我们的拟合曲线对所有的已知训练点的偏差情况。...如果有办法把这个和降到最低呢,我们也就找到了那条最中庸,也是最适合用来做这个房子买卖这件事的预测直线。 对上面的方差函数变一下形, ? 上面这个公式呢,就是我们的cost function了。

    71140

    R语言用线性回归模型预测空气质量臭氧数据

    在这里,我将讨论使用空气质量数据集的普通最小二乘回归示例解释线性模型时最重要的方面。...空气质量数据集 空气质量数据集包含对在纽约获得的以下四个空气质量指标的154次测量: 臭氧:平均臭氧水平,以十亿分之一为单位 Solar.R:太阳辐射  风:平均风速,每小时英里 温度:每日最高温度,以华氏度为单位...Temp")) 数据探索和准备 预测任务如下:根据太阳辐射,风速和温度,我们可以预测臭氧水平吗?...它定义为估计值与观察到的结果之间的相关性的平方: ## [1] 0.5924073 与[-1,1] [-1,1]中的相关性相反,R平方在[0,1] [0,1]中。...调整后的R平方 调整后的R平方值会根据模型的复杂性来调整R平方: 其中nn是观察数,pp是特征数。

    1.1K10

    【Python机器学习】系列之线性回归篇【深度详细】

    在研究一个大数据集问题之前,先从一个小问题开始学习建立模型和学习算法 一元线性回归 假设你想计算匹萨的价格。...现在假设有另一组数据,作为测试集进行评估。 有些度量方法可以用来评估预测效果,我们用R方(r-squared)评估匹萨价格预测的效果。...下面用scikitlearn方法来计算R方。 =56.8 然后,计算残差平方和,和前面的一样: 最后用下面的公式计算R方: R方是0.6620说明测试集里面过半数的价格都可以通过模型解释。...增加辅料的匹萨价格预测模型训练集如下表所示: 同时要升级测试集数据: 学习算法评估三个参数的值:两个相关因子和一个截距。 的求解方法可以通过矩阵运算来实现。...为什么只用一个测试集评估一个模型的效果是不准确的,如何通过将测试集数据分块的方法来测试,让模型的测试效果更可靠。不过现在至少可以认为,匹萨价格预测问题,多元回归确实比一元回归效果更好。

    3.9K91

    R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例|附代码数据

    测量斑块长度 这第一个数据集是从Griffith和Sheldon(2001年,《动物行为学》61:987-993)的一篇论文中提取的,他们在两年内对瑞典哥特兰岛上的30只雄性领头鶲的白色额斑进行了测量。...在R中把它转换成一个字符或因子,这样它就不会被当作一个数字变量。按照下面步骤(2)和(3)所述,用这个模型重新计算可重复性。重复性的解释如何改变? 从保存的lmer对象中提取参数估计值(系数)。...注意,在这个数据集中,其中一个变化源的估计标准差非常小。这就是畸形拟合信息背后的原因。鱼类之间的方差不太可能真的为零,但是这个数据集非常小,由于抽样误差,可能会出现低方差估计。...描述包括交互项的模型 "允许 "什么,而没有交互项的模型则不允许。判断,哪个模型最适合数据? 使用诊断图检查包括交互项的模型的线性混合模型的一个关键假设。...来估计所有固定效应组合的模型拟合平均值。 生成固定效应的方差分析表。哪些项在统计学上是显著的? 默认情况下,lmerTest将使用Type 3的平方和来测试模型项,而不是按顺序(Type 1)。

    1.2K30

    干货 | 提升深度学习模型的表现,你需要这20个技巧(附论文)

    重新调整数据的规模 4. 转换数据 5. 特征选择 1)获取更多数据 你能获取更多训练数据吗? 基本上,你的训练数据的质量就限制了你的模型的质量。你需要为你的问题寻找最好的数据,而且是很多很多数据。...你对你的模型的性能估计可靠吗?深度学习算法的训练很慢。这通常意味着我们不能使用黄金标准方法来估计模型的性能,比如 k-fold 交叉验证。 也许你正在使用一个简单的训练集/测试集分割,这是很常见的。...也许你可以使用一个验证 hold out 集来在它正在训练时获得一个验证模型性能的想法(对过早终止有用,见后文)。 也许你能撤回一个你只在模型选择演算后使用的完全无效的验证集。...也许你可以进行模型选择并利用小数据集微调,然后将最终的技术扩展到完整的数据集上。 也许你可以任意约束数据集,然后取样,并将其用于所有的模型开发 你必须对你模型的性能估计有充足的信心。...模型在训练和验证数据集上的准确率 如果训练比验证集的结果更好,你可能过拟合了,可以使用正则化技术进行调整 如果两个结果都很低,你可能欠拟合了,可以通过增加网络的容量并进行更多、更长的训练进行调整 如果有一个训练高于验证结果的拐点

    1.2K31

    网易云音乐的个性化推荐

    刚注册了一个新的账号,避免有历史数据的干扰,听了一首周杰伦的《一路向北》和陈奕迅的《淘汰》,然后去个性化推荐里看到了蔡健雅的《红色高跟鞋》和曲婉婷的《承认》,给我的感觉还是比较惊喜,像蔡健雅一般听的人比较少...这个想法的确很赞,包括我第一次听《一路向北》的时候也是一个朋友推荐给我的,这首歌不仅是个人喜欢的风格,再加上有朋友推荐所以留下很好的印象。但是很可惜,那个时候朋友圈不能分享。...(注,这里的破浪线表示的是估计的评分,接下来我们还会用到不带波浪线的R表示实际的评分): ? 因此我们队张三推荐四首歌中得分最高的B,对李四推荐得分最高的C,王五推荐B。 如果用矩阵表示即为: ?...下面问题来了,这个潜在因子(latent factor)是怎么得到的呢? 由于面对海量的让用户自己给音乐分类并告诉我们自己的偏好系数显然是不现实的,事实上我们能获得的数据只有用户行为数据。...我们沿用 @邰原朗的量化标准:单曲循环=5, 分享=4, 收藏=3, 主动播放=2 , 听完=1, 跳过=-2 , 拉黑=-5,在分析时能获得的实际评分矩阵R,也就是输入矩阵大概是这个样子: 事实上这是个非常非常稀疏的矩阵

    1.9K40

    R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例|附代码数据

    测量斑块长度 这第一个数据集是从Griffith和Sheldon(2001年,《动物行为学》61:987-993)的一篇论文中提取的,他们在两年内对瑞典哥特兰岛上的30只雄性领头鶲的白色额斑进行了测量。...在R中把它转换成一个字符或因子,这样它就不会被当作一个数字变量。按照下面步骤(2)和(3)所述,用这个模型重新计算可重复性。重复性的解释如何改变? 从保存的lmer对象中提取参数估计值(系数)。...注意,在这个数据集中,其中一个变化源的估计标准差非常小。这就是畸形拟合信息背后的原因。鱼类之间的方差不太可能真的为零,但是这个数据集非常小,由于抽样误差,可能会出现低方差估计。...描述包括交互项的模型 "允许 "什么,而没有交互项的模型则不允许。判断,哪个模型最适合数据? 使用诊断图检查包括交互项的模型的线性混合模型的一个关键假设。...来估计所有固定效应组合的模型拟合平均值。 生成固定效应的方差分析表。哪些项在统计学上是显著的? 默认情况下,lmerTest将使用Type 3的平方和来测试模型项,而不是按顺序(Type 1)。

    1.7K00

    数据科学24 | 回归模型-基本概念与最小二乘法

    回归分析可以帮助人们了解在只有一个自变量变化时因变量的变化量。 用一个简单的例子介绍最小二乘回归法拟合线性模型: 例:UsingR包的galton数据集,包括配对的父母和孩子的身高。...等于孩子身高均值时,残差平方的均值最小,即孩子身高的最小二乘估计是孩子身高的均值。...最小二乘法拟合线性模型解释父母身高与孩子身高的关系,令回归线经过原点,即截距为0,这条线可用 表示。令 为父母身高,最适合的线性模型的斜率?使实际观测值与预测值之间的残差平方和 最小。...值的残差平方和变化 可以看到,斜率?=0.64时,残差平方和最小。可以用 预测孩子的身高。 在R中可以用lm()函数快速拟合线性模型。...经验标准差和方差 定义经验方差为 定义经验标准差为 ,注意标准差与数据有相同单位 的经验标准差为1,这个过程称为"缩放"数据。 有时选择以分母 代替分母 ,后者为无偏估计 3.

    3.9K20
    领券