1.创建数据集/矩阵【data.frame数据框、matrix矩阵、array数组】
对二代测序结果的分析需要将基因、转录本、蛋白质等与功能或调控信息相关联。为了对基因列表进行功能分析,我们通常需要获得与我们希望使用的工具兼容的基因标识符。在这里,我们讨论了您可以获得基因注释信息的方法以及每种方法的一些优缺点。
这个包以一种统一的规范更高效地处理数据框。dplyr 包里处理数据框的所有函数的第一个参数都是数据框名。
今天在使用连接操作时发现:虽然都是合并操作函数,dplyr 包里的 *_join() 和基础包里面的 merge() 存在差异,不同的数据结构,结果也会存在偏差。
通过 gather ,并设定key(原先的列),与value(原先的数据),并通过 - (原先的行),对数据框进行转换。
DESeq2工作流程的下一步是QC,它包括样本级和基因级的步骤,对计数数据执行QC检查,以帮助我们确保样本/重复 看起来很好。
豆花寄语:学生信,R语言必学的原因是丰富的图表和Biocductor上面的各种生信分析R包。
1、merge(a,b),纯粹地把两个数据集合在一起,没有沟通a、b数据集的by,这样出现的数据很多,相当于a*b条数据;
数据(集)处理是数据分析过程中的重要环节,今天特别整理数据(集)合并、增减与连接的相关内容,并逐一作出示例。
## 0、Rstudio界面介绍及快捷键 # 运行当前/选中行 ctrl+enter # 中止运行 esc # 插入 <- Alt+- # 插入 %>% Ctrl+Shift+M # 快捷注释(支持多行选中)ctrl+shift+c 快捷注释后,如取消注释ctrl+shift+c # Rstudio自动补全 tab x <- 5 ## 1、生成数据 set.seed(0) set.seed(1) c() seq() #生成等差数据 rep() #重复生成数据 rep(1:10,
认识Tidy Data1.Reshape Data2.Handle Missing Values3.Expand Tables4.split cells一、测试数据1.新建数据框2.用tidyr进行处理3.按照geneid排序4.空值操作用表二、Dplyr能实现的小动作1.arrange 排序2.fliter3.distinct4.select5.mutate6.summarise7.bind_rows8.交集、并集、全集9.关联
这两篇纯生信文章都是对单个基因或者所有单个marker做生存分析,目的是找到其中能够影响患者生存的marker或者基因(包括miRNA,lncRNA,mRNA等等)。这也是目前非常常见的筛选基因或者marker的方法。
数据结构的塑造是数据可视化前重要的一环,虽说本公众号重心在于数据可视化,可是涉及到一些至关重要的数据整合技巧,还是有必要跟大家分享一下的。 在可视化前的数据处理技巧中,导入导出、长宽转换已经跟大家详细的介绍过了。 今天跟大大家分享数据集的合并与追加,并且这里根据所依赖函数的处理效率,给出诺干套解决方案。 数据合并操作涉及以下几个问题: 横向合并; 1. 是否需要匹配字段 1.1 匹配字段合并 1.1.1 主字段同名 1.1.2 主字段不同名 1.2 无需匹配字段合并 纵向合并:(情况比较简单,列
有时候两个数据框并没有很好地保持一致,不能简单地使用cbind()和rbind()函数,所以他们需要一个共同的列(common key)作为细胞融合的依据。最常用的内置函数为merge()和dplyr()包中的*_join(系列函数。
在这个过程中你可能会发现问题,例如下次在进到rstudio的话,查看镜像,又不在了,怎么办呢
数据操作中排序和去重是比较常见的数据操作,本专题对排序和去重做专门介绍,并且给出一种不常用却比较有启发意义的示例:多列无序去重
在数据分析中,往往会遇到各种复杂的数据处理操作:分组、排序、过滤、转置、填充、移动、合并、分裂、去重、找重、填充等操作。这时候R语言就是一个很好的选择:R可以高效地、优雅地解决数据处理操作。(本章节为R语言入门第二部分总结篇:数据操作)
用R画带ErrorBar的分组条形图 本文介绍了如何用R画出带error bar的分组条形图。 笔者近期画了一张带error bar的分组条形图,将相关的代码分享一下。 感谢知乎网友青山屋主的建议,提示笔者要严谨区分技术重复和生物学重复,所以笔者对文章做修改后重发。如果各位有任何建议,欢迎指正。 本文旨在给出一种利用R对生物学重复数据画带error bar的分组条形图的方法。 所用数据是模拟生成的:分成三个组,每个组进行了若干次生物学重复;测量的是3种基因的表达量。数据的部分内容如下: ## g
hello,hello!各位小伙伴们大家好,我是大家的小编豆豆,最近因为南京疫情,导致很多学校被封了,很多实验样品进不来,所以很多做实验的同学开始学生信。前两天,我妹妹在做GEO数据分析时遇到一点问题,就是将芯片数据的探针ID转化为Gene ID。小编以前也是学数据挖掘出身,知道这个是小伙伴们做GEO数据挖掘的第一道坎,今天小编就来写一个函数帮助小伙伴们快速的解决这个问题。
dplyr是一个在R语言中非常流行的数据处理包,它提供了许多功能强大且易于使用的函数,包括 select、 filter、mutate、arrange和summarize 等。这些功能使得dplyr成为数据清洗、处理和分析的首选包。
install.packages()/BiocManager::install()
tibble 是一种简单数据框,它对传统数据框的功能进行了一些修改,其所提供的简单数据框更易于在 tidyverse 中使用。
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #对应清华源
step1 对matrix进行转置:使gene名变为列名,将样本名转化为data.frame中的第一列
今天的任务是学习R包。以dplyr包的安装加载和使用为例进行学习,因为R包之间的使用是相通的,掌握了一个,后面的可以通过具体代码的学习进行使用。dplyr这个包我以前没有接触过,从这个入手,又能学习到新东西真不错。
由于业务中接触的数据量很大,于是不得不转战开始寻求数据操作的效率。于是,data.table这个包就可以很好的满足对大数据量的数据操作的需求。
作者,追风少年i~国庆前的最后一弹,分享一个简单的内容,空间轨迹向量场。其中关于空间轨迹,我也写了很多,文章放在下面,供大家参考时空轨迹分析导论空间转录组之空间基因和细胞轨迹单细胞个性化分析之轨迹分析篇图片首先我们来解读以下这个图片,这个地方类似于基因、细胞类型或者通路的区域转换(细胞迁移)。为了探索代谢改变区域中迁移基因表达特征的富集,确定了特定基因表达特征的低富集和高富集之间的定向梯度的空间方向。 简化后,每个点的方向向量是基于其局部邻域中所研究的基因表达特征的分级富集。这些向量场计算使我们能够近似
上述一串代码意思是新增一列列名为“new”、数值是Sepal.Length * Sepal.Width的列
这个功能很简单也很常用,但是不加注意还是容易写错,比如只对每一行的前两个元素求和:
本文通过多元方差分析和典型相关分析研究微生物(species)、细胞因子(cytokine)和短链脂肪酸(SCFA)之间的相关关系。以下是两种分析的定义:
“ echarts4r 包是R 语言访问/调用百度ECharts的接口,语法结构简单,可读性强,是很好的交互式绘图包。”
R语言中计算交集、并集、并集、差集,这些数学概念,这里汇总一下。包括向量的操作和数据框的操作。可以说是非常全面了。
最近做项目遇到了一个实际数据清洗的问题,如何将连续数据按从大到小分成n类?刚开始我是打算用tidyverse包的,但是找不到合适的函数。只能通过较为笨拙的方法进行了。
An R package is a set of R functions. Using dplyr as an example to learn R packages.
查看每列的非重复值及每个值的重复次数(直接用base的table(mpg$manufacturer)感觉效果类似)
还有一种像Linux一样直接修改R中的相当于Linux中的.bashrc/环境文件一样的R的环境文件.Rprofile即可
交集、并集、补集、差集,这些在R语言中如何实现呢,这篇博客介绍一下。 首先,模拟一下数据:a为1-10的数,b为5-15的数。 这里,推荐dplyr中的函数, library(dplyr) a = 1:10 b = 5:15 a b 1. 向量 1. 1 交集(intersect) R中的函数为:intersect「示例图:黄色线的区域,就是目标区域」 # 交集 intersect(a,b) 1.2 交集(union) R中的函数为:union「示例图:黄色线的区域,就是目标区域」 在
帮助文档 https://github.com/davidsjoberg/ggbump
本文目的:一文解决WGCNA分析问题。 原文章使用了自己识别的五个lncRNA,与mRNA合并做WGCNA分析,目的是为了得到lncRNA相关的mRNA。所以这里,我们做WGCNA,所需要的数据可以推测其包括:lncRNA表达量,mRNA表达矩阵,一些临床参数数据。 代码WGCNA_prepare.R(给WGCNA分析做前期数据准备) # ======================================================= ##########################
R包是多个函数的集合,R语言必学的原因是丰富的图表和Biocductor上面的各种生信分析R包。
领取专属 10元无门槛券
手把手带您无忧上云