首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

EXCEL截取某一列从第一个字符开始到特定字符结束的字符串到新的一列

使用EXCEL中的公式进行特定截取 假设列A是一组产品的编码,我们需要的数据是“-”之前的字段。...公式解释: search(特定字符,字符串) 返回指定字符在字符串中第一次出现的位置。以A1为例“-”出现的位置是4. len(字符串) 返回字符串的长度。...以A1为例,A1中字符串的长度为8 left(字符串,N) 返回字符串从左边数起至第N个字符的字段。...如LEFT(A1,3)则会返回“abc” right(字符串,N) 返回字符串从右边数起至第N个字符的字段。...如RIGHT(A1,4)则会返回“1256” 本篇文章如有帮助到您,请给「翎野君」点个赞,感谢您的支持。

21310
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas.read_csv 详细介绍

    pandas.read_csv 接口用于读取 CSV 格式数据文件,由于它使用非常频繁,功能强大参数众多,所以在这里专门做详细介绍, 我们在使用过程中可以查阅。...如果有多列解析成一个列,自动会合并到新解析的列,去掉此列,如果设置为 True 则会保留。...使用一个或者多个arrays(由parse_dates指定)作为参数; 连接指定多列字符串作为一个列作为参数; 每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates...zip”或“ .xz”结尾的字符串,则使用gzip,bz2,zip或xz,否则不进行解压缩。 如果使用“ zip”,则ZIP文件必须仅包含一个要读取的数据文件。设置为“None”将不进行解压缩。...,使用双引号表示引号内的元素作为一个元素使用。

    5.3K10

    Python库的实用技巧专栏

    , 包括UEL类型的文件 sep: str 指定数据分隔符, 默认尝试","分隔, 分隔符长于一个字符且不是"\s+", 将使用python的语法分析器, 并且忽略数据中的逗号 delimiter: str..., 如果该参数设定为True, 将会优先squeeze参数使用, 并且行索引将不再可用, 索引列也将被忽略 squeeze: bool 如果文件值包含一列, 则返回一个Series prefix: str..., 那么默认的NaN将被覆盖, 否则添加 na_filter: bool 是否检查丢失值(空字符串或者是空值), 对于大文件来说数据集中没有空值, 设定na_filter=False可以提升读取速度 verbose...来做转换, Pandas尝试使用三种不同的方式解析, 如果遇到问题则使用下一种方式 使用一个或者多个arrays(由parse_dates指定)作为参数 连接指定多列字符串作为一个列作为参数 每行调用一次...date_parser函数来解析一个或者多个字符串(由parse_dates指定)作为参数 dayfirst: bool DD/MM格式的日期类型 iterator: bool 返回一个TextFileReader

    2.3K30

    深入理解pandas读取excel,tx

    如果不指定参数,则会尝试使用默认值逗号分隔。分隔符长于一个字符并且不是‘\s+’,将使用python的语法分析器。并且忽略数据中的逗号。...都表现为NAN keep_default_na 如果指定na_values参数,并且keep_default_na=False,那么默认的NaN将被覆盖,否则添加 na_filter 是否检查丢失值(空字符串或者是空值...对于大文件来说数据集中没有N/A空值,使用na_filter=False可以提升读取速度。 verbose 是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。...1.使用一个或者多个arrays(由parse_dates指定)作为参数;2.连接指定多列字符串作为一个列作为参数;3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates...'utf-8' dialect 如果没有指定特定的语言,如果sep大于一个字符则忽略。

    6.2K10

    深入理解pandas读取excel,txt,csv文件等命令

    如果不指定参数,则会尝试使用默认值逗号分隔。分隔符长于一个字符并且不是‘\s+’,将使用python的语法分析器。并且忽略数据中的逗号。...都表现为NAN keep_default_na 如果指定na_values参数,并且keep_default_na=False,那么默认的NaN将被覆盖,否则添加 na_filter 是否检查丢失值(空字符串或者是空值...对于大文件来说数据集中没有N/A空值,使用na_filter=False可以提升读取速度。 verbose 是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。...1.使用一个或者多个arrays(由parse_dates指定)作为参数;2.连接指定多列字符串作为一个列作为参数;3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates...'utf-8' dialect 如果没有指定特定的语言,如果sep大于一个字符则忽略。

    12.3K40

    数据处理第2节:将列转换为正确的形状

    转换列:基础部分 您可以使用mutate()函数创建新列。 mutate中的选项几乎是无穷无尽的:你可以对普通向量做任何事情,可以在mutate()函数内完成。...mutate中的任何内容都可以是新列(通过赋予mutate新的列名),或者可以替换当前列(通过保持相同的列名)。 最简单的选项之一是基于其他列中的值的计算。...如果我想在几分钟内完成,我可以使用mutate_at()并将包含列的所有'sleep'包装在vars()中。 其次,我在飞行中创建一个函数,将每个值乘以60。....default指的是除NA之外的前组不包含的任何内容。 如果需要,可以通过添加.missing参数将NA更改为NA以外的其他参数(请参阅下一个示例代码)。...您指定新列名称,然后指定要合并的列,最后指定要使用的分隔符。

    8.1K30

    R语言基础教程——第8章:文件的输入与输出

    或者要读取的表中包含行名称的列序号或列名字符串。 在数据文件中有行头且首行的字段名比数据列少一个的情况下,数据文件中第1列将被视为行名称。...na.strings=c("-9","?")把-9和?值在读取数据时候转换成NA (11)colClasses 用于指定列所属类的字符串向量。 (12)nrows 整型数。...在没有忽略空白行的情况下(即blank.lines.skip=FLASE),且fill设置为TRUE时,如果数据文件中某行的数据少于其他行,则自动添加空白域。...如果一个数值向量,其元素为引用的列的索引。在这两种情况下,行和列名报价,如果他们被写入。如果FALSE,并没有被引用。 sep: 字段分隔符字符串。每一行x中的值都被这个字符串分隔开。...file.info():参数是表示文件名称的字符串向量,函数会给出每个文件的大小,创建时间,是否是目录等信息。 dir():返回一个字符串向量,列出在其第一个参数下面整个目录所有文件的名称。

    4.7K31

    Pandas 2.2 中文官方教程和指南(十·二)

    此外,在第一次附加/放置操作之后,您不能更改数据列(也不能更改索引列)(当然,您可以简单地读取数据并创建新表!)。...定义的列中的字符串值(按行)连接成单个数组并传递;3) 对每一行使用一个或多个字符串(对应于由 parse_dates 定义的列)作为参数调用 date_parser。...,如果要将多个文本列解析为单个日期列,则会在数据前添加一个新列。...如果您的 CSV 文件包含具有混合时区的列,则默认结果将是一个对象 dtype 列,其中包含字符串,即使使用parse_dates也是如此。...如果尝试解析日期字符串列,pandas 将尝试从第一个非 NaN 元素猜测格式,然后使用该格式解析列的其余部分。

    35200

    R 数据整理(七:使用tidyr和dplyr处理数据框 2.0)

    2.4 drop_na 效果和na.omit 一样,但是高级之处在于,其可以指定列,对数据框某列存在NA 的行直接删除: > library(tidyr) > drop_na(X,X1) X1 X2...offset 表示忽略n个。忽略最后一个即表示选择倒数第二个。 2.6 arrange 按照数据框里的某列或某几列,对所有行进行排序。...2.10 表格的拆分与合并 将同一列中的内容分为两列内容。或将两列内容合并为同一列内容。 首先还是可以创建一个数据框。...对于待分离的对象(col),不必加上引号;但对于即将创建的新列(into),需要使用引号,由于是两列,这里使用向量创建。sep参数设定读取表格信息时以何符号作为分隔符。...对于即将合并的新列,需要使用引号;但对于想要合并的多个列名,可以不用使用引号。sep 参数设定多列合并后不同数据分隔使用的分割符。

    10.9K30

    R数据科学|第八章内容介绍

    我们将重点介绍read_csv() 函数,不仅因为 CSV 文件是数据存储最常用的形式之一,还因为一旦掌握 read_csv() 函数,你就可以将从中学到的知识非常轻松地应用于 readr 的其他函数。...如果col_names是一个字符向量,这些值将被用作列的名称,并且输入的第一行将被读入输出数据帧的第一行。缺少(NA)列名将产生一个警告,并被填充为哑名X1, X2等。...默认的区域设置是以美国为中心的(如R),但您可以使用locale()创建自己的区域设置,控制默认时区、编码、十进制标记、大标记和日/月名称等内容。 na 字符串的字符向量,解释为缺少的值。...quoted_na 是否引号内缺少的值应该被视为缺少的值(默认)或字符串 comment 用于标识注释的字符串 trim_ws 在解析每个字段之前,是否应该修剪其前导和尾随空格?...guess_max 用于猜测列类型的最大记录数 progress 显示进度条 skip_empty_rows 是否忽略空白行 如果能够熟练使用read_csv()函数,就能同样使用readr包中的其他函数来读取文件了

    2.2K40

    精品教学案例 | 金融贷款数据的清洗

    查看数据中缺失值数量所占总数据量的百分比,从而使结果更加直观,以便进一步处理缺失值。 创建一个新的DataFrame数据表来存储每列数据中缺失值所占的百分比。...此处使用简单的字符串粘贴即可。...dataset_copy_2 = dataset.copy() 在前面介绍fillna()函数时,其value参数可以用一个字典进行传入,这样对其四列需要填补的属性来进行一个字典的创建,就可以只需要一个...首先创建一个字典用于存储填补缺失值所需要传入的字典。 因之前已经计算完毕了填补各列所需的值,此处就直接使用计算得到的值即可。...3.1 Python自带文件写入函数的存储 Python自带的函数写入文件较为简单,首先需要将文件作为对象读取,也就是使用open()函数将文件载入到内存中并创建一个对应的对象,其中第一个字符串代表着文件的路径

    4.7K21

    R 数据整理(六:根据分类新增列的种种方法 1.0)

    也就回到了开始创建的数据框test。 separate&&unite 将同一列中的内容分为两列内容。或将两列内容合并为同一列内容。 首先还是可以创建一个数据框。...对于待分离的对象(col),不必加上引号;但对于即将创建的新列(into),需要使用引号,由于是两列,这里使用向量创建。sep参数设定读取表格信息时以何符号作为分隔符。...对于即将合并的新列,需要使用引号;但对于想要合并的多个列名,可以不用使用引号。sep 参数设定多列合并后不同数据分隔使用的分割符。...到底需不需要引号,对于要处理的列(无论分离还是合并)不用;对于待生成的列则需要。 处理缺失值 创建一个存在NA 的数据框。...offset 表示忽略n个。忽略最后一个即表示选择倒数第二个。 everything 可以实现对列的自定义排序。其语法逻辑为,去掉指定的列后,筛选其他的列。

    2.1K20

    Pandas 2.1发布了

    6个月后(8月30日),更新了新的2.1版。让我们看看他有什么重要的更新。 更好的PyArrow支持 PyArrow是在Panda 2.0中新加入的后端,对于大数据来说提供了优于NumPy的性能。...Pandas 2.1增强了对PyArrow的支持。官方在这次更新中使用最大的高亮字体宣布 PyArrow 将是 Pandas 3.0的基础依赖,这说明Panda 是认定了PyArrow了。...映射所有数组类型时可以忽略NaN类值 在以前版本,可空类型上调用map会在存在类似nan的值时触发错误。而现在可以设定na_action= " ignore "参数,将忽略所有类型数组中的nan值。...字符串的默认类型 默认情况下,所有字符串都存储在具有NumPy对象dtype的列中,如果你安装了PyArrow,则会将所有字符串推断为PyArrow支持的字符串,这个选项需要使用这个参数设置: pd.options.future.infer_string...在Pandas 2.1中,花了很多精力使许多地方的Copy-On-Write保持一致。 新的日期方法 在Pandas 2.1中,增加了一组新处理日期的新方法。

    24220

    Pandas数据排序:单列与多列排序详解

    示例代码 import pandas as pd # 创建一个简单的DataFrame data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],...忽略大小写排序 当列包含字符串时,默认情况下,Pandas会区分大小写进行排序。...sort_values()方法同样支持多列排序,只需传入一个包含多个列名的列表即可。排序时,Pandas会按照列表中列的顺序依次排序。...确保提供的列名正确无误。 解决方案: 仔细检查列名拼写。 使用df.columns查看所有列名。 性能优化 对于大型数据集,排序操作可能比较耗时。可以通过减少不必要的列或使用更高效的算法来优化性能。...解决方案: 只选择需要排序的列。 使用inplace=True直接在原DataFrame上进行排序,避免创建副本。

    24310

    R语言数据分析利器data.table包 —— 数据框结构处理精讲

    比:=还快,通常和循环配合使用 至于这个操作究竟有多快,可以看一下(参照官方manual的命令),另外个人觉得最牛的三个函数是set(),fread,和fwrite fread fread(input...,或者字符串(至少有一个"\n"); sep列之间的分隔符; sep2,分隔符内再分隔的分隔符,功能还没有应用; nrow,读取的行数,默认-l全部,nrow=0仅仅返回列名; header第一行是否是列名...; na.strings,对NA的解释; file文件路径,再确保没有执行shell命令时很有用,也可以在input参数输入; stringsASFactors是否转化字符串为因子, verbose...sep2,对于是list的一列,写出去时list成员间以sep2分隔,它们是处于一列之内,然后内部再用字符分开; eol,行分隔符,默认Windows是"\r\n",其它的是"\n"; na,na... 填充首尾不匹配的行,TRUE填充,FALSE不填充,与roll一同使用 which TRUE返回匹配的行号,NA返回不匹配的行号,默认FALSE返回匹配的行 .SDcols 取特定的列,然后.

    5.9K20

    Pandas 2.1发布了

    6个月后(8月30日),更新了新的2.1版。让我们看看他有什么重要的更新。 更好的PyArrow支持 PyArrow是在Panda 2.0中新加入的后端,对于大数据来说提供了优于NumPy的性能。...Pandas 2.1增强了对PyArrow的支持。官方在这次更新中使用最大的高亮字体宣布 PyArrow 将是 Pandas 3.0的基础依赖,这说明Panda 是认定了PyArrow了。...映射所有数组类型时可以忽略NaN类值 在以前版本,可空类型上调用map会在存在类似nan的值时触发错误。而现在可以设定na_action= " ignore "参数,将忽略所有类型数组中的nan值。...字符串的默认类型 默认情况下,所有字符串都存储在具有NumPy对象dtype的列中,如果你安装了PyArrow,则会将所有字符串推断为PyArrow支持的字符串,这个选项需要使用这个参数设置: pd.options.future.infer_string...在Pandas 2.1中,花了很多精力使许多地方的Copy-On-Write保持一致。 新的日期方法 在Pandas 2.1中,增加了一组新处理日期的新方法。

    30530

    python pandas.read_csv参数整理,读取txt,csv文件

    如果不指定参数,则会尝试使用逗号分隔。分隔符长于一个字符并且不是‘\s+’,将使用python的语法分析器。并且忽略数据中的逗号。...header参数可以是一个list例如:[0,1,3],这个list表示将文件中的这些行作为列标题(意味着每一列有多个标题),介于中间的行将被忽略掉(例如本例中的2;本例中的数据1,2,4行将被作为多级标题出现...na_filter : boolean, default True 是否检查丢失值(空字符串或者是空值)。对于大文件来说数据集中没有空值,设定na_filter=False可以提升读取速度。...If [1, 2, 3] -> 解析1,2,3列的值作为独立的日期列; list of lists. e.g. If [[1, 3]] -> 合并1,3列作为一个日期列使用 dict, e.g....1.使用一个或者多个arrays(由parse_dates指定)作为参数; 2.连接指定多列字符串作为一个列作为参数; 3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates

    3.8K20

    Read_CSV参数详解

    如果不指定参数,则会尝试使用逗号分隔。分隔符长于一个字符并且不是‘\s+’,将使用python的语法分析器。并且忽略数据中的逗号。...header参数可以是一个list例如:[0,1,3],这个list表示将文件中的这些行作为列标题(意味着每一列有多个标题),介于中间的行将被忽略掉(例如本例中的2;本例中的数据1,2,4行将被作为多级标题出现...na_filter : boolean, default True 是否检查丢失值(空字符串或者是空值)。对于大文件来说数据集中没有空值,设定na_filter=False可以提升读取速度。...If [1, 2, 3] -> 解析1,2,3列的值作为独立的日期列; list of lists. e.g. If [[1, 3]] -> 合并1,3列作为一个日期列使用 dict, e.g....1.使用一个或者多个arrays(由parse_dates指定)作为参数; 2.连接指定多列字符串作为一个列作为参数; 3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates

    2.7K60

    Pandas 2.2 中文官方教程和指南(十·一)

    定义的列中的字符串值(按行)连接成单个数组并传递;3) 对每一行使用一个或多个字符串(对应于由 parse_dates 定义的列)调用 date_parser。...要对类别和顺序进行更多控制,预先创建一个CategoricalDtype,并将其传递给该列的dtype。...,如果要将多个文本列解析为单个日期列,则会在数据前添加一个新列。...如果您的 CSV 文件包含具有混合时区的列,则默认结果将是一个对象类型的列,其中包含字符串,即使使用 parse_dates 也是如此。...na_rep 默认为 NaN,NA 值的表示 formatters 默认为 None,一个字典(按列)的函数,每个函数接受一个参数并返回一个格式化的字符串 float_format 默认为

    35000
    领券