首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用加权类处理GradientBoostingClassifier中的不平衡数据?

Requests to the ChatCompletions_Create Operation under Azure OpenAI API version 2024-02-15-preview have exceeded token rate limit of your current OpenAI S0 pricing tier. Please retry after 1 second. Please go here: https://aka.ms/oai/quotaincrease if you would like to further increase the default rate limit.

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Focal Loss升级 | E-Focal Loss让Focal Loss动态化,类别极端不平衡也可以轻松解决

    长尾目标检测是一项具有挑战性的任务,近年来越来越受到关注。在长尾场景中,数据通常带有一个Zipfian分布(例如LVIS),其中有几个头类包含大量的实例,并主导了训练过程。相比之下,大量的尾类缺乏实例,因此表现不佳。长尾目标检测的常用解决方案是数据重采样、解耦训练和损失重加权。尽管在缓解长尾不平衡问题方面取得了成功,但几乎所有的长尾物体检测器都是基于R-CNN推广的两阶段方法开发的。在实践中,一阶段检测器比两阶段检测器更适合于现实场景,因为它们计算效率高且易于部署。然而,在这方面还没有相关的工作。

    01

    FASA: Feature Augmentation and Sampling Adaptationfor Long-Tailed Instance Segmentation

    最近的长尾实例分割方法在训练数据很少的稀有目标类上仍然很困难。我们提出了一种简单而有效的方法,即特征增强和采样自适应(FASA),该方法通过增强特征空间来解决数据稀缺问题,特别是对于稀有类。特征增强(FA)和特征采样组件都适用于实际训练状态——FA由过去迭代中观察到的真实样本的特征均值和方差决定,我们以自适应损失的方式对生成的虚拟特征进行采样,以避免过度拟合。FASA不需要任何精心设计的损失,并消除了类间迁移学习的需要,因为类间迁移通常涉及大量成本和手动定义的头/尾班组。我们展示了FASA是一种快速、通用的方法,可以很容易地插入到标准或长尾分割框架中,具有一致的性能增益和很少的附加成本。

    01

    【机器学习】不平衡数据下的机器学习方法简介

    机器学习已经成为了当前互联网领域不可或缺的技术之一,前辈们对机器学习模型的研究已经给我们留下了一笔非常宝贵的财富,然而在工业界的应用中我们可以看到,应用场景千千万万,数据千千万万但是我们的模型却依然是那些,在机器学习的应用中对数据的处理与分析往往扮演着比模型更加重要的角色,本文针对机器学习应用数据处理的一个方面即“不平衡数据”下的机器学习方法进行了简单介绍。 引言 不管是在学术界还是工业界,不平衡学习已经吸引了越来越多的关注,不平衡数据的场景也出现在互联网应用的方方面面,如搜索引擎的点击预测(点击的网页往往

    08
    领券