首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Android开发笔记(一百八十三)利用HMS轻松扫描二维码

开源的Android系统实际上只提供基本的系统服务,不提供常见的扩展服务诸如地图、邮箱、搜索、推送、机器学习、应用内支付等,这些扩展服务被谷歌公司打包成GMS套件(全称Google Mobile Service,中文名叫谷歌移动服务)。在海外市场,许多商用App都依赖于GMS提供的服务,手机缺少GMS会使得这些App没法使用,而手机厂商预装GMS套件需要获得谷歌公司授权。2019年华为公司遭到美国制裁,导致华为手机没能获得GMS授权,致使海外市场陷入寒冬。为此,华为公司推出了自主可控的HMS套件(全称Huawei Mobile Service,中文名叫华为移动服务),意图打破制裁。 HMS是华为公司提供的一套App扩展服务框架,它分为两部分,一部分是面向普通用户的预装App,包括花瓣地图、花瓣邮箱、花瓣搜索、花瓣支付等;另一部分是面向开发者的HMS Core,它给开发者提供API接口,用于在App开发时集成相关服务。HMS Core是华为移动服务提供的端、云开放能力的合集,包含华为账号、应用内支付、推送服务、游戏服务、定位服务、地图服务、广告服务和机器学习服务等,它的开源代码仓库地址为https://gitee.com/hms-core,开发者可在该仓库下载对应源码学习。 扫描二维码是HMS的一项基础服务,虽然谷歌公司也提供了zxing扫码框架,但是zxing框架的集成步骤不够简洁,而且它的识别速度偏慢,识别准确率也不高,远不如HMS的扫码服务来得好用。下面介绍如何在App工程中集成HMS的扫码服务。 首先,因为扫码属于第三方服务,所以要修改模块的build.gradle,往dependencies节点添加如下一行配置,表示导入指定版本的扫码库:

02

ORB-SLAM——a Versatile and Accurate Monocular SLAM System)

本文提出了ORB-SLAM,在大小场景、室内室外环境下都可以实时操作的一种基于特征的单目SLAM系统。系统对复杂的剧烈运动具有鲁棒性,允许宽基线的闭环和重定位,且包含完整的自动初始化。基于最近几年的优秀算法之上,我们从头开始设计了一种新颖的系统,它对所有SLAM任务使用相同的特征:追踪、建图、重定位和闭环。合适策略的存在使得选择的重建点和关键帧具有很好的鲁棒性,并能够生成紧凑的可追踪的地图,只有当场景内容发生变化地图才改变,从而允许长时间操作。本文从最受欢迎的数据集中提供了27个序列的详尽评估。相对于其他最先进的单目SLAM方法,ORB-SLAM实现了前所未有的性能。为了社会的利益,我们将源代码公开。

02

SIGGRAPH | 6个惯性传感器和1个手机实现人体动作捕捉、定位与环境重建

机器之心专栏 机器之心编辑部 近年来,基于惯性的人体动作捕捉技术迅速发展。它们通过在人体上穿戴惯性传感器,实时测量人体的运动信息。然而,这就好比一个人在蒙着眼睛走路——我们可以感受到身体的运动,但随着时间的累积,我们越来越难以确定自己的位置。 本文则试图打开惯性动作捕捉的「眼睛」。通过额外佩戴一个手机相机,我们的算法便有了「视觉」。它可以在捕获人体运动的同时感知环境信息,进而实现对人体的精确定位。该项研究来自清华大学徐枫团队,已被计算机图形学领域国际顶级会议SIGGRAPH2023接收。 论文地址:htt

05

基于RGBD的slam_rgb算法

首先,我们需要知道什么是SLAM(simultaneous localization and mapping, 详见SlamCN),SLAM,即时定位与制图,包含3个关键词:实时、定位、制图,就是实时完成定位和制图的任务,这就是SLAM要解决的基本任务。按照使用的传感器分为激光SLAM(LOAM、V-LOAM、cartographer)与视觉SLAM,其中视觉SLAM又可分为单目SLAM(MonoSLAM、PTAM、DTAM、LSD-SLAM、ORB-SLAM(单目为主)、SVO)、双目SLAM(LIBVISO2、S-PTAM等)、RGBD SLAM(KinectFusion、ElasticFusion、Kintinous、RGBD SLAM2、RTAB SLAM);视觉SLAM由前端(视觉里程计)、后端(位姿优化)、闭环检测、制图4个部分组成,按照前端方法分为特征点法(稀疏法)、光流法、稀疏直接法、半稠密法、稠密法(详见高翔《视觉slam十四讲》第xx章);按照后端方法分为基于滤波(详见SLAM中的EKF,UKF,PF原理简介)与基于图优化(详见深入理解图优化与g2o:图优化篇与深入理解图优化与g2o:g2o篇)的方法。

01

ICCV 2021 | BA NeRF 神经辐射场 (BARF)

Neural Radiance Fields (NeRF) 最近在计算机视觉领域获得了极大的关注,它提供了一种崭新的合成真实世界场景新视角的方法。然而,NeRF的一个局限性是它需要准确的相机位姿来学习场景表征。本文提出了一种 Bundle-Adjusting Neural Radiance Fields(BARF)算法,用于从不够准确(甚至是未知)的相机姿势中训练NeRF,可用于同时学习3D表征以及完成相机注册。本文从理论上建立了与经典图像对齐(image alignment)之间的联系,并阐明从粗到细的相机注册也适用于NeRF。此外,本文还发现,在NeRF中简单地使用位置编码对合成目标有负面影响(本文有改进)。在合成和真实世界数据上的实验表明,BARF可以有效地优化神经场景表征,并同时解决摄像机的姿势的错位。这使得视频序列的视图合成和来自未知摄像机姿势的定位成为可能,这为视觉定位系统(如SLAM)开辟了新的途径,也为密集的3D重建提供了潜在的应用。

02

ICLR 2024 最新研究 DYST 技术让视频表征更精准、更智能

首先来看引言部分,概述了在视觉表示学习领域的主流研究集中于捕捉个别图像的语义和2D结构的现状,并指出本研究的重点是同时捕捉场景的3D结构和动态,这对于规划、空间和物理推理以及与现实世界的有效互动至关重要。文章强调了最近在3D视觉场景的生成模型方面取得的进展,特别是从使用体素网格、点云或纹理网格等显式表示转向通过直接优化新视图合成(NVS)来学习隐式表示的转变。如神经辐射场(Neural Radiance Fields)虽然最初限于单一场景并需要大量输入图像、控制的照明、精确的相机姿态和长时间的处理,但随后已被扩展以处理照明变化、跨场景泛化、少量图像工作、缺失相机和动态场景。

01
领券