使用条带库(striping library)是一种在Go语言中解组数据的技术。它可以将数据分成多个条带(stripes),并将这些条带分别存储在不同的位置上,以提高数据的读写性能和可靠性。
条带库的分类:
条带库的优势:
条带库的应用场景:
腾讯云相关产品和产品介绍链接地址:
腾讯云提供了多个与云计算相关的产品,以下是其中一些产品的介绍链接地址:
请注意,以上链接仅供参考,具体产品选择应根据实际需求进行评估和决策。
机器之心专栏 阿里菜鸟物流人工智能部 据机器之心了解,阿里巴巴有 11 篇论文入选如今正在墨尔本进行的 IJCAI 2017 大会,其中 6 篇来自阿里巴巴-浙大前沿技术联合研究中心,3 篇来自蚂蚁金
本文介绍基于Python语言,结合已知研究区域中所覆盖的全部遥感影像的分幅条带号,从大量的遥感影像文件中筛选落在这一研究区域中的遥感影像文件的方法。
RAID 0是简单的磁盘条带化。所有数据以块的形式分布在RAID组中的所有磁盘上。RAID 0提供了很好的性能,因为您将存储数据的负载分散到了更多的物理驱动器上。它的成本也是所有RAID类型中最低的,因为它只使用磁盘空间来存储数据。因为没有为RAID 0生成奇偶校验,所以没有向RAID 0磁盘写入数据的开销。 然而,RAID 0在所有RAID级别中数据保护能力是最差的。当磁盘发生故障时,该磁盘上的数据在可以从另一个驱动器重写之前是不可用的。
https://docs.oracle.com/cd/B19306_01/server.102/b14231/storeman.htm#ADMIN036
原作者:Bane Radulovic 译者: 魏兴华 审核: 魏兴华 ASM file number 5 本章讲述ASM的5号文件,5号文件是ASM的模板目录,包含了磁盘组中所有的文件模板的信息。 有两种类型的模板:一种是系统自带的,一种是用户创建的,默认的模板(系统自带的)已经包含ASM的所有文件类型,创建文件时会根据文件类型自动匹配,用户创建的模板只会在用户特别指定时会使用。 每一个模板包含了如下的一些信息: ● 每个模板的名称(对于默认模板它的名称其实就是文件类型) ● 文件冗余度(默认是
ASM是Automatic Storage Management(自动存储管理)的缩写。ASM是一个集成的高性能的文件系统和卷管理器。Oracle将所有的存储分为disk groups,我们只需要管理这些disk groups,而不用去管具体的数据文件,也就是所谓的Oracle自动存储管理ASM。
最近链家删库跑路事件闹得沸沸扬扬,就有人说准备使用RAID冗余磁盘阵列防止这等事件,仔细想想,防止删库和RAID有毛关系?为了防止不必要的事情发生,这里简单做个RAID的科普。
准备把ASM这部分好好捋一下,主要是学习ASM部分的官方文档,去掉一些废话,补充一些大佬的总结。也有看不太明白的地方,暂时先放原文。
本文篇幅有点长,介绍的非常全面,可以不夸张的说全网找不到第二篇那么详细了,强烈建议在阅读前先收藏,以防后期找不到了!
大家好,又见面了,我是你们的朋友全栈君。 RAID0、RAID1、RAID5、RAID6、RAID10、RAID50的异同与应用
JSON (JavaScript Object Notation)是一种比XML更轻量级的数据交换格式,在易于人们阅读和编写的同时,也易于程序解析和生成。
磁盘阵列(Redundant Arrays of Inexpensive Disks,RAID),即“由廉价磁盘组成的冗余阵列”。
RAID 是一种用于提高数据存储性能和可靠性的技术,英文全称:Redundant Array of Independent Disks,中文意思:独立磁盘冗余阵列。RAID 系统由两个或多个并行工作的驱动器组成,这些可以是硬盘或者 SSD(固态硬盘)。
磁盘阵列(RAID, Redundant Array of Independent Disks)是将多个磁盘驱动器组合成一个或多个阵列以提高速度和/或数据可靠性的一种技术。下面是常见的几种RAID级别的概念、特点和利用率概述:
存储在ASM 磁盘组的文件称之为ASM 文件,Oracle数据库和ASM通过ASM 文件来交互
Raid0 :最少需要两块盘, 没用冗余数据,不做备份,任何一块磁盘损坏都无法运行。n块磁盘(同类型)的阵列理论上读写速度是单块磁盘的n倍(实际达不到),风险性也是单一n倍(实际更高),是磁盘阵列中存储性能最好的。适用于安全性不高,要求比较高性能的图形工作站或者个人站。
RAID(Redundant Array of Independent Disks):独立冗余磁盘阵列,简称磁盘阵列。RAID是按照一定的形式和方案组织起来的存储设备,它比单个存储设备在速度、稳定性和存储能力上都有很大提高,并且具备一定的数据安全保护能力。
RAID是(Redundent Array of Inexpensive Disks)的缩写,直译为"廉价冗余磁盘阵列",也简称为"磁盘阵列"。后来RAID中的字母I被改作了Independent,RAID就成了"独立冗余磁盘阵列",但这只是名称的变化,实质性的内容并没有改变。可以把RAID理解成一种使用磁盘驱动器的方法,它将一组磁盘驱动器用某种逻辑方式联系起来,作为逻辑上的一个磁盘驱动器来使用。
小甲师兄有个喜好——喜欢下雨:每逢下雨天,不是诗兴大发,就是代码撸的飞起。再加上最近在优化rbd,小甲把之前分析的OSDC代码分享给大家
客户故障存储设备为IBM V5000存储,由于存储设备的控制器损坏,导致存储中数据卷无法访问,需恢复数据卷中的Oracle数据库文件。
Fayson在前面的文章中介绍过CDH6,参考《Cloudera Enterprise 6正式发布》和《如何在Redhat7.4安装CDH6.0》。CDH6主要集成打包了Hadoop3,包括Hadoop3的一些新特性的官方支持,比如NameNode联邦,纠删码等。纠删码可以将HDFS的存储开销降低约50%,同时与三分本策略一样,还可以保证数据的可用性。本文Fayson主要介绍纠删码的工作原理。
提高IO能力: 磁盘并行读写 提高耐用性: 磁盘冗余来实现 级别:多块磁盘组织在一起的工作方式有所不同 RA
当前计算机系统会根据访问速度,介质成本,介质可靠性等,搭配多种不同的存储介质,有代表性的可用存储介质包括。
Ceph客户端的对象映射是一种机制,用于将Ceph存储集群中的对象映射到客户端的文件系统上,使其能够像使用本地文件系统一样读取和写入数据。
经过pool,rbd,object、pg的层层映射关系,在PG这一层中,已经知道存储数据的3个OSD所在位置及主从关系。 客户端与primay OSD建立SOCKET 通信,将要写入的数据传给primary OSD,由primary OSD再将数据发送给其他replica OSD数据节点。
XStream是java实现对javaBean(实用类)简单快速进行序列化反序列化的框架。目前支持XML或JSON格式数据的序列化或反序列化过程。
本次北亚小编分享的是一篇DS4800服务器LVM信息丢失恢复思路讲解。基于DS4800服务器的AIX小机卷丢失、DS4800存储服务器LVM信息丢失应该如何做恢复呢?
1988 年美国加州大学伯克利分校的 D. A. Patterson 教授等首次在论文 “A Case of Redundant Array of Inexpensive Disks” 中提出了 RAID 概念 [1] ,即廉价冗余磁盘阵列( Redundant Array of Inexpensive Disks )。由于当时大容量磁盘比较昂贵, RAID 的基本思想是将多个容量较小、相对廉价的磁盘进行有机组合,从而以较低的成本获得与昂贵大容量磁盘相当的容量、性能、可靠性。随着磁盘成本和价格的不断降低, RAID 可以使用大部分的磁盘, “廉价” 已经毫无意义。因此, RAID 咨询委员会( RAID Advisory Board, RAB )决定用 “ 独立 ” 替代 “ 廉价 ” ,于时 RAID 变成了独立磁盘冗余阵列( Redundant Array of Independent Disks )。但这仅仅是名称的变化,实质内容没有改变。
RAID 技术相信大家都有接触过,尤其是服务器运维人员,RAID 概念很多,有时候会概念混淆。这篇文章为网络转载,写得相当不错,它对 RAID 技术的概念特征、基本原理、关键技术、各种等级和发展现状进行了全面的阐述,并为用户如何进行应用选择提供了基本原则,对于初学者应该有很大的帮助。
使用Statspack类似的工具对数据库响应时间分析之后,已经表明与IO相关的等待事件限制了系统性能,有许多的方法可以判断这种问题。
图文并茂 RAID 技术全解 – RAID0、RAID1、RAID5、RAID100……
RAID 技术相信大家都有接触过,尤其是服务器运维人员,RAID 概念很多,有时候会概念混淆。这篇文章为网络转载,写得相当不错,它对 RAID 技术的概念特征、基本原理、关键技术、各种等级和发展现状进行了全面的阐述,并为用户如何进行应用选择提供了基本原则,对于初学者应该有很大的帮助。 一、RAID概述 1988 年美国加州大学伯克利分校的 D. A. Patterson 教授等首次在论文 “A Case of Redundant Array of Inexpensive Disks” 中提出了 RAID 概念 [1] ,即廉价冗余磁盘阵列( Redundant Array of Inexpensive Disks )。由于当时大容量磁盘比较昂贵, RAID 的基本思想是将多个容量较小、相对廉价的磁盘进行有机组合,从而以较低的成本获得与昂贵大容量磁盘相当的容量、性能、可靠性。随着磁盘成本和价格的不断降低, RAID 可以使用大部分的磁盘, “廉价” 已经毫无意义。因此, RAID 咨询委员会( RAID Advisory Board, RAB )决定用 “ 独立 ” 替代 “ 廉价 ” ,于时 RAID 变成了独立磁盘冗余阵列( Redundant Array of Independent Disks )。但这仅仅是名称的变化,实质内容没有改变。 RAID 这种设计思想很快被业界接纳, RAID 技术作为高性能、高可靠的存储技术,已经得到了非常广泛的应用。 RAID 主要利用数据条带、镜像和数据校验技术来获取高性能、可靠性、容错能力和扩展性,根据运用或组合运用这三种技术的策略和架构,可以把 RAID 分为不同的等级,以满足不同数据应用的需求。 D. A. Patterson 等的论文中定义了 RAID1 ~ RAID5 原始 RAID 等级, 1988 年以来又扩展了 RAID0 和 RAID6 。近年来,存储厂商不断推出诸如 RAID7 、 RAID10/01 、 RAID50 、 RAID53 、 RAID100 等 RAID 等级,但这些并无统一的标准。目前业界公认的标准是 RAID0 ~ RAID5 ,除 RAID2 外的四个等级被定为工业标准,而在实际应用领域中使用最多的 RAID 等级是 RAID0 、 RAID1 、 RAID3 、 RAID5 、 RAID6 和 RAID10。 从实现角度看, RAID 主要分为软 RAID、硬 RAID 以及软硬混合 RAID 三种。软 RAID 所有功能均有操作系统和 CPU 来完成,没有独立的 RAID 控制 / 处理芯片和 I/O 处理芯片,效率自然最低。硬 RAID 配备了专门的 RAID 控制 / 处理芯片和 I/O 处理芯片以及阵列缓冲,不占用 CPU 资源,但成本很高。软硬混合 RAID 具备 RAID 控制 / 处理芯片,但缺乏 I/O 处理芯片,需要 CPU 和驱动程序来完成,性能和成本 在软 RAID 和硬 RAID 之间。 RAID 每一个等级代表一种实现方法和技术,等级之间并无高低之分。在实际应用中,应当根据用户的数据应用特点,综合考虑可用性、性能和成本来选择合适的 RAID 等级,以及具体的实现方式。 二、基本原理 RAID ( Redundant Array of Independent Disks )即独立磁盘冗余阵列,通常简称为磁盘阵列。简单地说, RAID 是由多个独立的高性能磁盘驱动器组成的磁盘子系统,从而提供比单个磁盘更高的存储性能和数据冗余的技术。 RAID 是一类多磁盘管理技术,其向主机环境提供了成本适中、数据可靠性高的高性能存储。 SNIA 对 RAID 的定义是 [2] :一种磁盘阵列,部分物理存储空间用来记录保存在剩余空间上的用户数据的冗余信息。当其中某一个磁盘或访问路径发生故障时,冗余信息可用来重建用户数据。磁盘条带化虽然与 RAID 定义不符,通常还是称为 RAID (即 RAID0 )。 RAID 的初衷是为大型服务器提供高端的存储功能和冗余的数据安全。在整个系统中, RAID 被看作是由两个或更多磁盘组成的存储空间,通过并发地在多个磁盘上读写数据来提高存储系统的 I/O 性能。大多数 RAID 等级具有完备的数据校验、纠正措施,从而提高系统的容错性,甚至镜像方式,大大增强系统的可靠性, Redundant 也由此而来。 这里要提一下 JBOD ( Just a Bunch of Disks )。最初 JBOD 用来表示一个没有控制软件提供协调控制的磁盘集合,这是 RAID 区别与 JBOD 的主要因素。目前 JBOD 常指磁盘柜,而不论其是否提供 RAID 功能。 RAID 的两个关键目标是提高数据可靠性和 I/O 性能。磁盘阵列中,数据分散在多个磁盘中,然而对于计算机系统
类图(Class Diagram)用于描述系统中所包含的类以及它们之间的相互关系,帮助人们简化对系统的理解,它是系统分析和设计阶段的重要产物,也是系统编码和测试的重要模型依据。 类 类(Class)封装了数据和行为,是面向对象的重要组成部分,它是具有相同属性、操作、关系的对象集合的总称。在系统中,每个类都具有一定的职责,职责指的是类要完成什么样的功能,要承担什么样的义务。一个类可以有多种职责,设计得好的类一般只有一种职责。在定义类的时候,将类的职责分解成为类的属性和操作(即方法)。类的属性即类的数据职责,类
分布式服务化作为SOA的另一种选择,以不同方式把ESB的一些功能重做了一遍。 SOA/ESB:代理调用,直接增强。
服务器数据恢复指的是通过技术手段将原本存储在服务器、存储设备内的,由于误操作、硬件故障、恶意攻击等原因丢失的数据进行修复提取的专业技术。在介绍服务器数据恢复前我们首先需要了解服务器的数据结构、文件存储原理,今天小编通过一起华为s5300服务器数据介绍该型号服务器的数据存储结构和数据恢复原理。
ASM(Auto Storage Management,自动存储管理)是一种用于管理磁盘的工具。ASM是Oracle为了简化数据库的管理而推出来的一项新功能,这是Oracle自己提供的卷管理器,主要用于替代操作系统所提供的LVM,它不仅支持单实例,同时对RAC的支持也是非常好。ASM可以自动管理磁盘组并提供有效的数据冗余功能。使用ASM后,DBA不再需要对Oracle中成千上万的数据文件进行管理和分类,从而简化了DBA的工作量,可以使得工作效率大大提高。ASM支持Data Files,Online Log Files,Control Files,Archived Logs,RMAN backup sets等文件。
单波束测深是利用声波在水中的传播特性来测量水体深度的技术。声波在均匀介质中作匀速直线传播,在不同界面上产生反射。
RAID5的空间利用率高、读出速度快、安全性高、不需要专门的校验码磁盘,而且解决了写入速度相对较慢的问题。尽管优点很多但还是会有出现故障的情况,当遇到RAID-5磁盘阵列的两块盘掉线,表现为两块硬盘亮黄灯应该怎么办呢?
首先说下 BLOB 的意思, 英文全称是 Binary Large OBjects,可以理解为任意二进制格式的大对象;在 Facebook 的语境下,也就是用户在账户里上传的的图片,视频以及文档等数据,这些数据具有一次创建,多次读取,不会修改,偶尔删除 的特点。
GlusterFS (Gluster File System) 是一个开源的分布式文件系统,主要由 Z RESEARCH 公司负责开发。GlusterFS 是 Scale-Out 存储解决方案 Gluster 的核心,具有强大的横向扩展能力,通过扩展能够支持数PB存储容量和处理数千客户端。GlusterFS 借助 TCP/IP 或 InfiniBand RDMA 网络将物理分布的存储资源聚集在一起,使用单一全局命名空间来管理数据。GlusterFS 基于可堆叠的用户空间设计,可为各种不同的数据负载提供优异的性能。
GlusterFS是开源的分布式文件系统,由存储服务器、客户端以及NFS/Samba存储网关组成的无元数据服务器
本次分享的案例是关于HP FC MSA2000存储瘫痪抢救Oracle数据库的案例,故障存储整个存储空间由8块硬盘组成,其中7块硬盘组成一个RAID5的阵列,剩余1块做成热备盘使用。由于RAID5阵列中出现2块硬盘损坏,而此时只有一块热备盘成功激活,因此导致RAID5阵列瘫痪,上层LUN无法正常使用。 由于存储是因为RAID阵列中某些磁盘掉线,从而导致整个存储不可用。因此接收到磁盘以后先对所有磁盘做物理检测,检测完后发现没有物理故障。排除物理故障后对数据全部备份后在进行进一步的分析。 【故障分析】 1、分析故障原因 由于前两个步骤并没有检测到磁盘有物理故障或者是坏道,由此推断可能是由于某些磁盘读写不稳定导致故障发生。因为HP MSA2000控制器检查磁盘的策略很严格,一旦某些磁盘性能不稳定,HP MSA2000控制器就认为是坏盘,就将认为是坏盘的磁盘踢出RAID组。而一旦RAID组中掉线的盘到达到RAID级别允许掉盘的极限,那么这个RAID组将变的不可用,上层基于RAID组的LUN也将变的不可用。目前初步了解的情况为基于RAID组的LUN有6个,均分配给HP-Unix小机使用,上层做的LVM逻辑卷,重要数据为Oracle数据库及OA服务端。 2、分析RAID组结构 HP MSA2000存储的LUN都是基于RAID组的,因此需要先分析底层RAID组的信息,然后根据分析的信息重构原始的RAID组。分析每一块数据盘,发现4号盘的数据同其它数据盘不太一样,初步认为可能是hot Spare盘。接着分析其他数据盘,分析Oracle数据库页在每个磁盘中分布的情况,并根据数据分布的情况得出RAID组的条带大小,磁盘顺序及数据走向等RAID组的重要信息。 3、分析RAID组掉线盘 根据上述分析的RAID信息,尝试通过北亚RAID虚拟程序将原始的RAID组虚拟出来。但由于整个RAID组中一共掉线两块盘,因此需要分析这两块硬盘掉线的顺序。仔细分析每一块硬盘中的数据,发现有一块硬盘在同一个条带上的数据和其他硬盘明显不一样,因此初步判断此硬盘可能是最先掉线的,通过北亚RAID校验程序对这个条带做校验,发现除掉刚才分析的那块硬盘得出的数据是最好的,因此可以明确最先掉线的硬盘了。 4、分析RAID组中的LUN信息 由于LUN是基于RAID组的,因此需要根据上述分析的信息将RAID组最新的状态虚拟出来。然后分析LUN在RAID组中的分配情况,以及LUN分配的数据块MAP。由于底层有6个LUN,因此只需要将每一个LUN的数据块分布MAP提取出来。然后针对这些信息编写相应的程序,对所有LUN的数据MAP做解析,然后根据数据MAP并导出所有LUN的数据。 【数据恢复过程】 1、解析修复LVM逻辑卷 分析生成出来的所有LUN,发现所有LUN中均包含HP-Unix的LVM逻辑卷信息。尝试解析每个LUN中的LVM信息,发现其中一共有三套LVM,其中45G的LVM中划分了一个LV,里面存放OA服务器端的数据,190G的LVM中划分了一个LV,里面存放临时备份数据。剩余4个LUN组成一个2.1T左右的LVM,也只划分了一个LV,里面存放Oracle数据库文件。编写解释LVM的程序,尝试将每套LVM中的LV卷都解释出来,但发现解释程序出错。 仔细分析程序报错的原因,安排开发工程师debug程序出错的位置,并同时安排高级文件系统工程师对恢复的LUN做检测,检测LVM信息是否会因存储瘫痪导致LMV逻辑卷的信息损坏。经过仔细检测,发现确实因为存储瘫痪导致LVM信息损坏。尝试人工对损坏的区域进行修复,并同步修改程序,重新解析LVM逻辑卷。 2、解析VXFS文件系统 搭建环境,将解释出来的LV卷映射到搭建好的环境中,并尝试Mount文件系统。结果Mount文件系统出错,尝试使用“fsck –F vxfs” 命令修复vxfs文件系统,但修复结果还是不能挂载,怀疑底层vxfs文件系统的部分元数据可能破坏,需要进行手工修复。 3、修复VXFS文件系统 仔细分析解析出来的LV,并根据VXFS文件系统的底层结构校验此文件系统是否完整。分析发现底层VXFS文件系统果然有问题,原来当时存储瘫痪的同时此文件在系统正在执行IO操作,因此导致部分文件系统元文件没有更新以及损坏。人工对这些损坏的元文件进行手工修复,保证VXFS文件系统能够正常解析。再次将修复好的LV卷挂载到HP-Unix小机上,尝试Mount文件系统,文件系统没有报错,成功挂载。 4、检测Oracle数据库文件并启动数据库 在HP-Unix机器上mount文件系统后,将所有用户数据均备份至指定磁盘空间。所有用户数据大小在1TB左右。 使用Oracle数据库文件检测工具“dbv”检测每个数据库文件是否完整,发现并没有错误。再使用北亚Oracle数据库检测工具,发现有部分数据库文件和日志文件校验不一致,安排北亚工程师对此类文件进行修复
EC(纠删码)是一种编码技术,在HDFS之前,这种编码技术在廉价磁盘冗余阵列(RAID)中应用最广泛(RAID介绍:大数据预备知识-存储磁盘、磁盘冗余阵列RAID介绍),RAID通过条带化技术实现EC,条带化技术就是一种自动将 I/O 的负载均衡到多个物理磁盘上的技术,原理就是将一块连续的数据分成很多小部分并把他们分别存储到不同磁盘上去,这就能使多个进程同时访问数据的多个不同部分而不会造成磁盘冲突(当多个进程同时访问一个磁盘时,可能会出现磁盘冲突),而且在需要对这种数据进行顺序访问的时候可以获得最大程度上的 I/O 并行能力,从而获得非常好的性能。在HDFS中,把连续的数据分成很多的小部分称为条带化单元,对于原始数据单元的每个条带单元,都会计算并存储一定数量的奇偶检验单元,计算的过程称为编码,可以通过基于剩余数据和奇偶校验单元的解码计算来恢复任何条带化单元上的错误。
GlusterFS (Gluster File System) 是一个开源的分布式文件系统,主要由 Z RESEARCH公司负责开发。GlusterFS 是 Scale-Out 存储解决方案 Gluster 的核心,具有强大的横向扩展能力,通过扩展能够支持数PB存储容量和处理数千客户端。GlusterFS 借助 TCP/IP 或 InfiniBand RDMA 网络将物理分布的存储资源聚集在一起,使用单一全局命名空间来管理数据。GlusterFS 基于可堆叠的用户空间设计,可为各种不同的数据负载提供优异的性能。
VSAN的虚拟机存储策略 VSAN的虚拟机存储策略有5种功能,或者说5种规则(Rule)。从各家磁盘阵列厂商对Virtual Volumes的支持,我们可以看到VMware SPBM所涵盖的规则要比VSAN的5个规则丰富得多,随着VSAN在数据服务(Data Services,也即存储功能)的不断发展,未来会支持更多的规则。在新的VSAN版本里,去重、纠删码、QoS(IOPS Limit),也放到了存储策略里。
领取专属 10元无门槛券
手把手带您无忧上云