首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NumPy Essentials 带注释源码 三、NumPy 数组使用

    # 来源:NumPy Essentials ch3 向量化 import numpy as np # NumPy 数组的运算是向量化的 # 数组和标量运算是每个元素和标量运算 x = np.array..., True, True, False], dtype=bool) # NumPy 使用 C 语言编译出来的代码来处理数据 # 所以很快 x = np.arange(10000) ''' %timeit...6, 7, 7, 7]) # np.min 计算整个数组的最小值 # 属于聚集函数 np.min(x) # 5 z = np.repeat(x, 3).reshape(5, 3) z '''...可接受布尔数组作为索引 # 布尔数组的形状需要与原数组一致 # True 元素表示取该值,False 表示不取 # 结果是一维数组 x [mask] = 0 x # array([1, 3, 0, 5..., 7, 0]) # 布尔数组可以使用 sum 方法来统计 True 的个数 # 原理是调用 sum 时会将 False 转换成 0 # True 转换成 1 x = np.random.random

    76660

    【Python深度学习前传】用NumPy获取数组的值、分片以及改变数组的维度

    获取数组值和数组的分片 NumPy数组也指出与Python列表相同的操作,例如,通过索引获得数组值,分片等。...下面的例子演示了如何通过索引获得NumPy数组的值,以及对NumPy数组使用分片操作。...from numpy import * # 定义一个二维的NumPy数组 a = array([[1,2,3],[4,5,6],[7,8,9]]) # 输出数组a的第1行第1列的值,运行结果:1 print...1*3的二维数组,运行结果:[[1 2 3]] print(a[0:1]) # 分片操作,获取1*3的二维数组的第1行的值,运行结果:[1 2 3] print(a[0:1][0]) # 分片操作,将3...本节将介绍NumPy中与数组维度相关的常用API的使用方法。 下面的例子演示了如何利用NumPy中的API对数组进行维度操作。

    2.6K20

    初探numpy——数组的创建

    numpy创建数组 使用array函数创建数组 import numpy as np array=np.array([1,2,3]) print(array) [1 2 3] 使用numpy.empty...使用numpy.ones方法创建数组 numpy.ones方法可以创建一个指定大小的数组,数组元素以1来填充 numpy.ones(shape , dtype = float , order = 'C'...使用numpy.eye方法创建数组 numpy.eye方法可以创建一个正方的n*n单位矩阵(对角线为1,其余为0) array=np.eye(3) print(array) [[1. 0. 0....numpy.arange方法创建数组 使用numpy.arange方法创建数值范围数组并返回ndarray对象 numpy.arange(start , stop , step, dtype) 参数 描述...步长 array=np.arange(10,20,3) print(array) [10 13 16 19] 使用numpy.linspace方法创建数组 numpy.linspace用于创建一个一维等差数列的数组

    1.7K10

    Numpy中的数组维度

    ., 23) 进行重新的排列时,在多维数组的多个轴的方向上,先分配最后一个轴(对于二维数组,即先分配行的方向,对于三维数组即先分配平面的方向) # 代码 import numpy as np # 一维数组...a = np.arange(24) print("a的维度:\n",a.ndim) # 现在调整其大小,2行3列4个平面 b = np.reshape(np.arange(24), (2, 3, 4)...) # b 现在拥有三个维度 print("b(也是三维数组):\n",b) # 分别看看每一个平面的构成 print("b的每一个平面的构成:\n") print(b[:, :, 0]) print(...b[:, :, 1]) print(b[:, :, 2]) print(b[:, :, 3]) # 运行结果 a的维度: 1 b(也是三维数组): [[[ 0 1 2 3] [ 4 5...6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]] b的每一个平面的构成: [[ 0 4 8] [

    1.6K30

    【科学计算包NumPy】NumPy数组的创建

    科学计算包 NumPy 是 Python 的一种开源的数值计算扩展库。它包含很多功能,如创建 n 维数组(矩阵)、对数组进行函数运算、数值积分等。...NumPy 的诞生弥补了这些缺陷,它提供了两种基本的对象: ndarray :是储存单一数据类型的多维数组。 ufunc :是一种能够对数组进行处理的函数。   ...NumPy 常用的导入格式: import numpy as np 一、创建数组对象   通常来说, ndarray 是一个通用的同构数据容器,即其中的所有元素都需要相同的类型。...;生成的元素不包括结束值; step 步长,可省略,默认步长为1; dtype 设置元素的数据类型,默认使用输入数据的类型。...结束值;生成的元素不包括结束值; num 要生成的等间隔样例数量 a3 = np.linspace(0,100,11) # 注意:连同首尾共11个端点,10个区间(最后一个参数表示数组中元素的数量

    11100

    python文字转图片(二值、RGB)以及numpy数组

    文字一般使用unicode等编码的形式在计算机中表示,但是其形态本身也很有价值。...如果能够把文字转为图片,就可以做一些应用,比如: 基于最近邻查找来实现简单的OCR文字识别 从像素中提取特征用于机器学习,如Glyce 其他的各种脑洞,比如计算字符所占像素数/长/宽之类的 其实现的思路不是那么直截了当...代码实现如下: from PIL import Image, ImageDraw, ImageFont import numpy as np import matplotlib.pyplot as plt...if __name__ == "__main__": # 预设合适的字体,对于中文尤其重要,否则会乱码,这里使用常见的黑体 fontsize = 16 font = ImageFont.truetype...plt.imshow(image) # 使用matplotlib显示 plt.show() print(np.array(image, dtype=int)) # 转数组

    5K30

    numpy中数组的遍历技巧

    在numpy中,当需要循环处理数组中的元素时,能用内置通函数实现的肯定首选通函数,只有当没有可用的通函数的情况下,再来手动进行遍历,遍历的方法有以下几种 1....,所以通过上述方式只能访问,不能修改原始数组中的值。...print(i) ... 0 1 2 3 4 5 6 7 8 9 10 11 3. nditer迭代器 numpy中的nditer函数可以返回数组的迭代器,该迭代器的功能比flat更加强大和灵活,在遍历多维数组时...for x,y in np.nditer([a,b]): ... print(x,y) ... 0 0 1 0 2 0 3 0 4 1 5 1 6 1 7 1 8 2 9 2 10 2 11 2 简单的元素访问直接使用...for循环迭代数组即可,注意二维数组和一维数组的区别,nditer的3个特点对应不同的使用场景,当遇到对应的情况时,可以选择nditer来进行遍历。

    12.5K10

    numpy中的掩码数组

    numpy中有一个掩码数组的概念,需要通过子模块numpy.ma来创建,基本的创建方式如下 >>> import numpy as np >>> import numpy.ma as ma >>> a...上述代码中,掩藏了数组的前3个元素,形成了一个新的掩码数组,在该掩码数组中,被掩藏的前3位用短横杠表示,对原始数组和对应的掩码数组同时求最小值,可以看到,掩码数组中只有未被掩藏的元素参与了计算。...掩码数组赋予了我们重新选择元素的权利,而不用改变矩阵的维度。...在numpy.ma子模块中,还提供了多种创建掩码数组的方式,用法如下 >>> import numpy.ma as ma >>> a array([0, 1, 2, 3, 4]) # 等于2的元素被掩盖...,可以方便的处理缺失值或者被污染的值,只需要将对应的元素掩码即可,更多的用法请查阅官方的API文档。

    1.9K20

    Numpy的轴及numpy数组转置换轴

    前言: 在现代数据科学和机器学习领域,NumPy成为了Python中最为强大和广泛使用的科学计算库之一。它提供了高性能的多维数组对象,以及用于处理这些数组的各种数学函数。...本文将探讨NumPy中一个关键而强大的概念——轴(axis)以及如何利用数组的转置来灵活操作这些轴。 随着数据集的不断增大和复杂性的提高,了解如何正确使用轴成为提高代码效率和数据处理能力的关键一环。...让我们深入探讨NumPy数组的轴以及如何通过转置操作来灵活地操控数据,为您的科学计算和数据分析工作提供更为精细的控制。...] 也就是把数组 [ 0,1 ] 的一维数组变成数组[ 1,0 ] numpy数组转置换轴 transpose方法 【行列转置】 import numpy as np 数组=np.arange(24...这些技能不仅对于处理大型数据集和进行高效计算至关重要,还对于构建复杂的机器学习模型和深度学习网络具有重要意义。

    23110

    【科学计算包NumPy】NumPy数组的基本操作

    一、数组的索引和切片 (一)数组的索引 首先,导入 NumPy 库。 import numpy as np 一维数组的索引与 Python 列表的索引用法相同。...(2)如果两个数组的形状在任何一个维度上都不匹配,那么数组的形状会沿着维度为 1 的维度进行扩展,以匹配另一个数组的形状。 (3)输出数组的 shape 是输入数组 shape 的各个轴上的最大值。...indexing),允许用一个索引数组作为另一个数组的索引以获取后者的子集。...格式:numpy.sort(a, axis, kind, order) 参数 使用说明 a 要排序的数组 kind 排序算法,默认为“quicksort” order 排序的字段名,可指定字段排序,默认为...使用 argsort 和 lexsort 函数,可以在给定一个或多个键时,得到一个由整数构成的索引数组,索引值表示数据在新的序列中的位置。

    12310

    Python之numpy的ndarray数组使用方法介绍

    NumPy介绍 NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括: (1)一个强大的N维数组对象ndrray; (2)比较成熟的(广播)函数库; (3)用于整合...C/C++和Fortran代码的工具包; (4)实用的线性代数、傅里叶变换和随机数生成函数 主要优点: 1.NumPy数组在数值运算方面的效率优于Python提供的list容器。...2.使用NumPy可以在代码中省去很多循环语句,因此其代码比等价的Python代码更为简洁。...def test1(): # 通过python的list来构建numpy array list1 = [[1, 2, 3]] list2 = [[1], [2], [3]]...,排序,返回下标 np.argsort(a[:,0]) #升序 [7,3,4] // np.argsort(-a[:,0]) #降序 #下面这个是按从小到大排序后的索引值 [1,2,0] # 取出排序后的元数据

    1K30

    三个NumPy数组合并函数的使用

    在 numpy 中合并数组比较常用的方法有 concatenate、vstack 和 hstack。...在介绍这三个方法之前,首先创建几个不同维度的数组: import numpy as np # 创建一维数组 x = np.array([1, 2, 3]) y = np.array([3, 2, 1]...待合并的数组除了待合并的维度,其余维度上的值必须相等。二维数组(矩阵)有两个 axis,一个 axis = 0(行方向),一个 axis = 1(列方向),如果是多维数组依次类推。...vstack 和 hstack 我们在实际开发中,比较常用的操作就是对二维或者三维数组进行行和列的合并操作,所以 numpy 为我们提供了更加方便的 vstack 和 hstack。...''' array([[ 1, 2, 3, 100, 200, 300], [ 4, 5, 6, 400, 500, 600]]) ''' 上面的操作我们同样可以使用

    2K20

    【Python科学计算】使用NumPy水平组合数组和垂直组合数组

    数组A 0 1 2 3 4 5 数组B 6 7 8 4 1 5 现在使用hstack函数将两个数组水平组合的代码如下。 hstack(A,B) hstack函数的返回值就是组合后的结果。...下面的例子通过reshape方法以及乘法运行创建了3个二维数组(行数相同),然后使用hstack函数水平组合其中的两个或三个数组。...from numpy import * a = arange(9).reshape(3,3) b = a * 3 print(a) print('----------------') print(b)...数组A 0 1 2 3 4 5 数组B 6 7 8 4 1 5 现在使用vstack函数将两个数组垂直组合的代码如下。 vstack(A,B) vstack函数的返回值就是组合后的结果。...0 1 2 3 4 5 6 7 8 4 1 5 下面的例子通过reshape方法以及乘法运行创建了3个二维数组(行数相同),然后使用hstack函数水平组合其中的两个或三个数组。

    1.4K30

    java如何打印数组的值,Java打印数组元素的值

    大家好,又见面了,我是你们的朋友全栈君。 本篇文章帮大家学习java打印数组元素的值,包含了Java打印数组元素的值使用方法、操作技巧、实例演示和注意事项,有一定的学习价值,大家可以用来参考。...以下实例演示了如何通过重载 MainClass 类的 printArray 方法输出不同类型(整型, 双精度及字符型)的数组:public class MainClass { public static...5.5, 6.6, 7.7 }; Character[] characterArray = { ‘H’, ‘E’, ‘L’, ‘L’, ‘O’ }; System.out.println(“输出整型数组...(“\n输出字符型数组:”); printArray(characterArray); } } 以上代码运行输出结果为: 输出整型数组: 1 2 3 4 5 6 输出双精度型数组: 1.1 2.2 3.3...4.4 5.5 6.6 7.7 输出字符型数组: H E L L O 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/131413.html原文链接:https:/

    4.3K10

    numpy数组拼接:stack(),vstack(),hstack()函数使用总结

    numpy数组拼接:stack(),vstack(),hstack()函数使用总结 在学习中遇到了上面这三个函数,容易混淆,特在此做个总结,为了便于理解对数据做了一些简单的可视化处理。...1. numpy.vstack(tup) 从上面的代码及输出结果我们可以得知numpy.vstack()函数是将数组垂直堆叠起来,这个函数与numpy.stack()在参数axis=0时很像。...2. numpy.hstack(tup) 同样,我们容易得知numpy.hstack()函数是将数组沿水平方向堆叠起来。...3. numpty.stack(arrays, axis=0, out=None) 使用numpy.stack()函数会增加一个维度, c1 = np.stack((a,b),axis=1) print...a,b是两个一维数组,numpy.stack()函数的难点在于参数axis的选择,参数默认axis=0。当参数axis=0时跟numpy.vstack()类似。

    3.9K10

    【NumPy 数组过滤、NumPy 中的随机数、NumPy ufuncs】

    python之Numpy学习 NumPy 数组过滤 从现有数组中取出一些元素并从中创建新数组称为过滤(filtering)。 在 NumPy 中,我们使用布尔索引列表来过滤数组。...布尔索引列表是与数组中的索引相对应的布尔值列表。 如果索引处的值为 True,则该元素包含在过滤后的数组中;如果索引处的值为 False,则该元素将从过滤后的数组中排除。...实例 生成一个 0 到 100 之间的随机浮点数: from numpy import random x = random.rand() print(x) 生成随机数组 在 NumPy 中,我们可以使用上例中的两种方法来创建随机数组...实例 返回数组中的值之一: from numpy import random x = random.choice([3, 5, 7, 9]) print(x) choice() 方法还允许您返回一个值数组...实例 生成由数组参数(3、5、7 和 9)中的值组成的二维数组: from numpy import random x = random.choice([3, 5, 7, 9], size=(3,

    13210
    领券