首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python时间序列分析简介(2)

使用Pandas进行时间重采样 考虑将重采样为 groupby() ,在此我们可以基于任何列进行分组,然后应用聚合函数来检查结果。...我们重新采样时间序列索引的一些重要规则是: M =月末 A =年终 MS =月开始 AS =年开始 让我们将其应用于我们的数据集。 假设我们要在每年年初计算运输的平均值。...在这里,我们基于每年的开始(请记住“ AS”的功能)对索引进行了重新采样,然后在其中应用了 均值 函数,现在我们有了每年年初的均值。 我们甚至可以在resample中使用我们自己的自定义函数 。...在这里,首先,我们通过对规则=“ MS”(月开始)进行重新采样来绘制每个月开始的平均值。然后我们设置了 autoscale(tight = True)。这将删除多余的绘图部分,该部分为空。...我可以按以下方式进行绘制。 ? 在这里,我们指定了 xlim 和 ylim。看看我如何在xlim中添加日期。主要模式是 xlim = ['开始日期','结束日期']。 ?

3.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python 数据分析(PYDA)第三版(五)

    ,如归一化、线性回归、排名或子集选择 计算数据透视表和交叉制表 执行分位数分析和其他统计组分析 注意 对时间序列数据进行基于时间的聚合,是groupby的一个特殊用例,在本书中被称为重新采样...在 Python 中,通过本章描述的groupby功能以及利用分层索引进行重塑操作,可以实现使用 pandas 的透视表。...Python 标准库包括用于日期和时间数据以及与日历相关的功能的数据类型。...幸运的是,pandas 具有一整套标准时间序列频率和重新采样工具(稍后在重新采样和频率转换中更详细地讨论),可以推断频率并生成固定频率的日期范围。...在使用resample对数据进行下采样时,有几件事需要考虑: 每个间隔的哪一侧是关闭的 如何为每个聚合的箱子打标签,可以是间隔的开始或结束 为了说明,让我们看一些一分钟频率的数据: In [

    17900

    数据科学 IPython 笔记本 7.14 处理时间序列

    时间间隔(interval)和时间段:引用特定开始和结束点之间的时间长度;例如,2015 年。...类似地,pd.date_range()接受开始日期,结束日期和可选频率代码,来创建常规日期序列。...重采样,平移和窗口化 使用日期和时间作为索引,来直观地组织和访问数据的能力,是 Pandas 时间序列工具的重要组成部分。...在这里,我们将以每日频率(即包括周末)重新采样商业日数据: fig, ax = plt.subplots(2, sharex=True) data = goog.iloc[:10] data.asfreq...更详细地挖掘这些数据,并检查天气,温度,一年中的时间,以及其他因素对人们通勤模式的影响,将会很有趣;进一步的讨论请参阅我的博客文章“Is Seattle Really Seeing an Uptick

    4.6K20

    Pandas 秘籍:6~11

    准备 在本秘籍中,我们使用groupby方法执行聚合,以创建具有行和列多重索引的数据帧,然后对其进行处理,以使索引为单个级别,并且列名具有描述性。...每行包含开始/结束条纹的月份和日期,以及条纹的总长度: >>> def max_delay_streak(df): df = df.reset_index(drop=True)...条纹的第一行和最后一行的索引存储为变量。 然后,这些索引用于选择条纹结束的月份和日期。 我们使用数据帧返回结果。 我们标记并命名索引以使最终结果更清晰。...我们还可以使用parse_dates参数确保将开始日期和结束日期正确地强制为正确的数据类型: >>> df_list = pd.read_html(trump_url, match='Start Date...最典型地,时间在每个数据点之间平均间隔。 Pandas 在处理日期,在不同时间段内进行汇总,对不同时间段进行采样等方面具有出色的功能。

    34K10

    Pandas DateTime 超强总结

    Period 对象的功能 如何使用时间序列 DataFrames 如何对时间序列进行切片 DateTimeIndex 对象及其方法 如何重新采样时间序列数据 探索 Pandas 时间戳和周期对象 Pandas...例如,如果要返回期间的开始和结束时间,可以使用以下属性: print('Start Time:', year.start_time) print('End Time:', year.end_time)...以下语句将返回从 2019 年 4 月 3 日到 2019 年 4 月 4 日结束的所有行;开始日期和结束日期都包括在内: display(df.loc['03-04-2019':'04-04-2019...虽然我们可以使用 resample() 方法进行上采样和下采样,但我们将重点介绍如何使用它来执行下采样,这会降低时间序列数据的频率——例如,将每小时的时间序列数据转换为每日或 每日时间序列数据到每月 以下示例返回服务器...为此,我们首先需要过滤 DataFrame 中服务器 ID 为 100 的行,然后将每小时数据重新采样为每日数据。

    5.6K20

    从Excel到Python:最常用的36个Pandas函数

    ,冒号前面为开始的标签值后面为结束的标签值。...Reset_index函数用于恢复索引,这里我们重新将date字段的日期 设置为数据表的索引,并按日期进行数据提取。 #重设索引 df_inner.reset_index() ?...2.按位置提取(iloc) 使用iloc函数按位置对数据表中的数据进行提取,这里冒号前后 的数字不再是索引的标签名称,而是数据所在的位置,从0开始。...#对筛选后的结果按price进行求和 df_inner.query('city == ["beijing", "shanghai"]').price.sum() 12230 数据汇总 Excel中使用分类汇总和数据透视可以按特定维度对数据进行汇总...#对特定的ID列进行计数汇总 df_inner.groupby('city')['id'].count() city beijing 2 guangzhou 1 shanghai 2 shenzhen

    11.5K31

    时间序列&日期学习笔记大全(下)

    对Series和数据框使用日期偏移 可以将偏移量应用到每个元素 rng = pd.date_range('2012-01-01', '2012-01-03') s = pd.Series(rng) #...对s 序列所有日期进行偏移,偏移2个月 s + pd.DateOffset(months=2) # 偏移的是日,时分秒的时候,可以直接类似timedelta使用 s - pd.offsets.Day(2...重新采样 resample resample是一个基于时间的groupby方法,可以方便的用于频率转换,重采样功能非常灵活,允许指定许多不同的参数来控制频率转换和重采样操作。...# 源数据是按秒来设置的,要重新以250毫秒进行采样 ts[:2].resample('250L').asfreq() ts[:2].resample('250L').ffill(limit=2) ?...() # 对指定列的group求平均值 r['A'].mean() # 对特定的几列的group求平均值 r[['A', 'B']].mean() # 对特定列的group求和,求平均值,求标准差 r[

    1.1K10

    再见了!Pandas!!

    、示例、以及一段Python代码。...欢迎大家点个赞、转个发~ 经过了几天的整理,内容已经是比较全面了,大家想要获取的。 规则照旧,文末获取PDF版本,那咱们开始吧~ 50个超强Pandas操作 1....选择特定行和列 df.loc[index, 'ColumnName'] 使用方式: 通过索引标签和列名选择DataFrame中的特定元素。 示例: 选择索引为1的行的“Name”列的值。...时间序列重采样 df.resample('D').sum() 使用方式: 对时间序列数据进行重新采样。 示例: 将数据按天重新采样并求和。 df.resample('D').sum() 27....使用apply函数对列进行操作 df['NewColumn'] = df['Column'].apply(lambda x: x * 2) 使用方式: 使用apply函数对某列的每个元素进行操作,可传递自定义函数

    16910

    Pandas学习笔记之时间序列总结

    日期和时间数据有如下几类来源,我们会在本节中进行讨论: 时间戳 代表着一个特定的时间点(例如 2015 年 7 月 4 日上午 7 点)。...同样,pd.date_range()接受开始日期时间、结束日期时间和可选的周期码来创建日期时间的规则序列。...重新采样和改变频率 对于时间序列数据来说有一个很普遍的需求是对数据根据更高或更低的频率进行重新取样。这可以通过resample()方法或更简单的asfreq()方法来实现。...两者的主要区别在于resample()主要进行数据聚合操作,而asfreq()方法主要进行数据选择操作。 观察一下谷歌的收市价,让我们来比较一下使用两者对数据进行更低频率来采样的情况。...例如,我们希望对每天不同时段的平均交通情况进行统计,我们可以使用聚合与分组中介绍过的 GroupBy 功能: by_time = data.groupby(data.index.time).mean()

    4.2K42

    掌握pandas中的时序数据分组运算

    而在pandas中,针对不同的应用场景,我们可以使用resample()、groupby()以及Grouper()来非常高效快捷地完成此类任务。...原始的意思是「重采样」,可分为「上采样」与「下采样」,而我们通常情况下使用的都是「下采样」,也就是从高频的数据中按照一定规则计算出更低频的数据,就像我们一开始说的对每日数据按月汇总那样。...如果你熟悉pandas中的groupby()分组运算,那么你就可以很快地理解resample()的使用方式,它本质上就是在对时间序列数据进行“分组”,最基础的参数为rule,用于设置按照何种方式进行重采样...index不是日期时间类型,也可以使用参数on来传入日期时间列名实现同样的效果。...2.2 利用groupby()+Grouper()实现混合分组 有些情况下,我们不仅仅需要利用时间类型列来分组,也可能需要包含时间类型在内的多个列共同进行分组,这种情况下我们就可以使用到Grouper(

    3.4K10

    时间序列的重采样和pandas的resample方法介绍

    可以使用loffset参数来调整重新采样后的时间标签的偏移量。 最后,你可以使用聚合函数的特定参数,例如'sum'函数的min_count参数来指定非NA值的最小数量。...1、指定列名 默认情况下,Pandas的resample()方法使用Dataframe或Series的索引,这些索引应该是时间类型。但是,如果希望基于特定列重新采样,则可以使用on参数。...这允许您选择一个特定的列进行重新采样,即使它不是索引。...2、指定开始和结束的时间间隔 closed参数允许重采样期间控制打开和关闭间隔。...4、汇总统计数据 重采样可以执行聚合统计,类似于使用groupby。使用sum、mean、min、max等聚合方法来汇总重新采样间隔内的数据。这些聚合方法类似于groupby操作可用的聚合方法。

    1.1K30

    pandas时间序列常用方法简介

    在进行时间相关的数据分析时,时间序列的处理是自然而然的事情,从创建、格式转换到筛选、重采样和聚合统计,pandas都提供了全套方法支持,用的熟练简直是异常丝滑。 ?...3.分别访问索引序列中的时间和B列中的日期,并输出字符串格式 ? 03 筛选 处理时间序列的另一个常用需求是筛选指定范围的数据,例如选取特定时段、特定日期等。...,其中两个参数中可有一个缺省,表示半开区间 dt.between,也是借助时间序列的dt属性,接受起始和结束参数,实现特定范围筛选 ?...04 重采样 重采样是pandas时间序列中的一个特色操作,在有些连续时间记录需要按某一指定周期进行聚合统计时尤为有效,实现这一功能的函数主要是resample。...关于pandas时间序列的重采样,再补充两点:1.重采样函数可以和groupby分组聚合函数组合使用,可实现更为精细的功能,具体可参考Pandas中groupby的这些用法你都知道吗一文;2.重采样过程中

    5.8K10

    (数据科学学习手札99)掌握pandas中的时序数据分组运算

    而在pandas中,针对不同的应用场景,我们可以使用resample()、groupby()以及Grouper()来非常高效快捷地完成此类任务。 ?...原始的意思是重采样,可分为上采样与下采样,而我们通常情况下使用的都是下采样,也就是从高频的数据中按照一定规则计算出更低频的数据,就像我们一开始说的对每日数据按月汇总那样。   ...如果你熟悉pandas中的groupby()分组运算,那么你就可以很快地理解resample()的使用方式,它本质上就是在对时间序列数据进行“分组”,最基础的参数为rule,用于设置按照何种方式进行重采样...图2   可以看到,在上面的例子中,我们对index为日期时间类型的DataFrame应用resample()方法,传入的参数'M'是resample第一个位置上的参数rule,用于确定时间窗口的规则,...图5   而即使你的数据框index不是日期时间类型,也可以使用参数on来传入日期时间列名实现同样的效果。

    1.8K20

    Pandas库

    使用groupby()和transform()进行分组操作和计算。 通过以上步骤和方法,可以有效地对数据进行清洗和预处理,从而提高数据分析的准确性和效率。 Pandas时间序列处理的高级技巧有哪些?...以下是一些主要的高级技巧: 重采样(Resampling) : 重采样是时间序列数据处理中的一个核心功能,它允许你按照不同的频率对数据进行重新采样。例如,可以将日数据转换为月度或年度数据。...例如,可以根据特定条件筛选出满足某些条件的数据段,并对这些数据段应用自定义函数进行处理。...Pandas的groupby方法可以高效地完成这一任务。 在Pandas中,如何使用聚合函数进行复杂数据分析? 在Pandas中,使用聚合函数进行复杂数据分析是一种常见且有效的方法。...相比之下,NumPy主要关注数值计算和科学计算问题,其自身有较多的高级特性,如指定数组存储的行优先或者列优先、广播功能以及ufunc类型的函数,从而快速对不同形状的矩阵进行计算。

    8410

    Python pandas十分钟教程

    Pandas是数据处理和数据分析中最流行的Python库。本文将为大家介绍一些有用的Pandas信息,介绍如何使用Pandas的不同函数进行数据探索和操作。...包括如何导入数据集以及浏览,选择,清理,索引,合并和导出数据等常用操作的函数使用,这是一个很好的快速入门指南,如果你已经学习过pandas,那么这将是一个不错的复习。...可以通过如下代码进行设置: pd.set_option('display.max_rows', 500) 读取数据集 导入数据是开始的第一步,使用pandas可以很方便的读取excel数据或者csv数据...要选择多个列,可以使用df[['Group', 'Contour', 'Depth']]。 子集选择/索引:如果要选择特定的子集,我们可以使用.loc或.iloc方法。...Concat适用于堆叠多个数据帧的行。

    9.8K50

    Pandas三百题

    分组统计|取消索引 重新按照上一题要求进行分组,但不使用 district 做为索引 df.groupby("district", as_index=False)['salary'].mean()...('positionName').agg({'salary': 'median', 'score': 'mean'}) 20 -聚合统计|多层 对不同行政区进行分组,并统计薪水的均值、中位数、方差,以及得分的均值...|值 将 df1 的索引设置为日期,将 df1 数据向后移动一天 df1.set_index(['日期']).shift(1) 25 - 日期重采样|日 -> 周 按周对 df1 进行重采样,保留每周最后一个数据...df1.set_index('日期').resample('W').last() ​ 26 - 日期重采样|日 -> 月 按月对 df1 进行重采样,保留每月最后一个数据 df1.set_index(...'日期').resample('M').last() 27 - 日期重采样|分钟 -> 日 按日对 df2 进行重采样,保留每天最后一个数据 df2.set_index('时间').resample('

    4.8K22

    Pandas 学习手册中文第二版:11~15

    实体往往代表现实世界中的事物,例如一个人,或者在物联网中,是一个传感器。 然后,使用单个数据帧对每个特定实体及其度量进行建模。 通常需要在模型中的实体上和实体之间执行各种任务。...重新采样实际上将根据新的周期将数据拆分为数据桶,然后对每个桶中的数据执行特定操作,在这种情况下,将计算桶的平均值。...,以及如何对这些值随时间变化进行建模。...要计算每月的回报率,我们可以使用一些 Pandas 魔术,然后对原始的每日回报进行重新采样。...值未更改,因为重新采样仅选择了月底的日期,或者如果源中不存在该日期之前的值,则使用该日期之前的值进行填充。

    3.4K20
    领券