首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

说说地图中的聚类

概述 虽然Openlayers4会有自带的聚类效果,但是有些时候是不能满足我们的业务场景的,本文结合一些业务场景,讲讲地图中的聚类展示。...需求 在级别比较小的时候聚类展示数据,当级别大于一定的级别的时候讲地图可视域内的所有点不做聚类全部展示出来。 效果 ? ? ?...对象; clusterField: 如果是基于属性做聚类的话可设置此参数; zooms: 只用到了最后一个级别,当地图大于最大最后一个值的时候,全部展示; distance:屏幕上的聚类距离...; data:聚类的数据; style:样式(组)或者样式函数 2、核心方法 _clusterTest:判断是否满足聚类的条件,满足则执行_add2CluserData,不满足则执行..._clusterCreate; _showCluster:展示聚类结果; 调用代码如下: var mycluster = new myClusterLayer

61230

如何为地图数据使用tSNE聚类

编译:yxy 出品:ATYUN订阅号 在本文中,我会展示如何在经纬度坐标对上使用tSNE来创建地图数据的一维表示。这种表示有助于开发新的地图搜索算法。这对于诸如“这个经纬度坐标是新泽西或者纽约的吗?”...或“离我最近的披萨位置在哪里?”这样的查询非常有用。更快的地图搜索对于Uber,Google Maps和Directions,Yelp等公司来说非常有价值。...tSNE(t-distributed stochastic neighbor embedding)是一种聚类技术,其最终结果与PAC(principal component analysis)相似。...许多聚类算法的核心是以这样的方式识别高维数据集中的相似性,从而可以降低维度。...tSNE算法用于保持较高空间中的线性空间关系,而一些聚类算法例如,径向基函数网络中使用的算法是试图增强空间关系,使得新空间可线性分离(例如XOR逻辑问题的解决方案。

1.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    K-Means(K 均值),聚类均值漂移聚类,基于密度的聚类方法,DBSCAN 聚类,K-Means 的两个失败案例,使用 GMMs 的 EM 聚类,凝聚层次聚类

    K-Means 聚类 首先,我们选择一些类/组,并随机初始化它们各自的中心点。为了算出要使用的类的数量,最好快速查看一下数据,并尝试识别不同的组。...这种方法对异常值不敏感(因为使用中值),但对于较大的数据集要慢得多,因为在计算中值向量时,每次迭代都需要进行排序。 均值漂移聚类 均值漂移聚类是基于滑动窗口的算法,它试图找到数据点的密集区域。...我们继续按照均值移动滑动窗口直到没有方向在核内可以容纳更多的点。请看上面的图;我们一直移动这个圆直到密度不再增加(即窗口中的点数)。...用高斯混合模型(GMM)的最大期望(EM)聚类 K-Means 的一个主要缺点是它对于聚类中心均值的简单使用。通过下面的图,我们可以明白为什么这不是最佳方法。...这些聚类在现实生活中也很有意义,其中黄色顶点通常是参考/搜索网站,蓝色顶点全部是在线发布网站(文章、微博或代码)。 假设我们已经将该网络聚类成了一些团体。我们就可以使用该模块性分数来评估聚类的质量。

    23010

    深度聚类近来比较火的方向你知道吗?

    也即聚类后同一类的数据尽可能聚集到一起,不同类数据尽量分离。 聚类概述聚类分析在机器学习和数据挖掘中起着不可或缺的作用。学习一个好的数据表示方法对于聚类算法是至关重要的。...近年来,利用深度神经网络学习聚类友好表示的深度聚类已经广泛应用于各种聚类任务中。...根据已有的论文提出的结构,我们可以将算法具话为为五类:基于 深度自编码器(DAE) 的深度聚类基于 深度神经网络(DNN) 的深度聚类基于 变分自编码器(VAE) 的深度聚类基于 生成对抗网络(GAN)...,传统的聚类方法无法有效的利用这些先验信息,但是半监督聚类是解决这一问题的有效方法。...通过在模型中添加附加信息作为约束损失,可以使聚类方法成为半监督聚类方法。但是目前深度半监督聚类的研究还未得到很好的探索。

    91650

    【数据挖掘】聚类算法 简介 ( 基于划分的聚类方法 | 基于层次的聚类方法 | 基于密度的聚类方法 | 基于方格的聚类方法 | 基于模型的聚类方法 )

    聚类主要算法 II . 基于划分的聚类方法 III . 基于层次的聚类方法 IV . 聚合层次聚类 图示 V . 划分层次聚类 图示 VI . 基于层次的聚类方法 切割点选取 VII ....基于划分的聚类方法 ---- 基于划分的方法 简介 : 基于划分的方法 , 又叫基于距离的方法 , 基于相似度的方法 ; ① 概念 : 给定 n 个数据样本 , 使用划分方法 , 将数据构建成 k...切割点说明 : 实际进行聚类分析时 , 不会将所有的步骤走完 , 这里提供四个切割点 , 聚类算法进行聚类时 , 可以在任何一个切割点停止 , 使用当前的聚类分组当做聚类结果 ; ① 切割点 1 :...切割点说明 : 实际进行聚类分析时 , 不会将所有的步骤走完 , 这里提供四个切割点 , 聚类算法进行聚类时 , 可以在任何一个切割点停止 , 使用当前的聚类分组当做聚类结果 ; ① 切割点 1 :...基于距离聚类的缺陷 : 很多的聚类方法 , 都是 基于样本对象之间的距离 ( 相似度 ) 进行的 , 这种方法对于任意形状的分组 , 就无法识别了 , 如下图左侧的聚类模式 ; 这种情况下可以使用基于密度的方法进行聚类操作

    2.9K20

    使用Pytorch实现Kmeans聚类

    Kmeans是一种简单易用的聚类算法,是少有的会出现在深度学习项目中的传统算法,比如人脸搜索项目、物体检测项目(yolov3中用到了Kmeans进行anchors聚类)等。...一般使用Kmeans会直接调sklearn,如果任务比较复杂,可以通过numpy进行自定义,这里介绍使用Pytorch实现的方式,经测试,通过Pytorch调用GPU之后,能够提高多特征聚类的速度。...init_points = x[init_row] self.centers = init_points while True: # 聚类标记...,作为聚类的代表样本,更加直观 self.representative_samples = torch.argmin(self.dists, (0)) def time_clock(...因为pytorch的矩阵运算接口基本是照着numpy写的,所以numpy的实现方式大概只需要将代码中的torch替换成numpy就可以了。

    4.3K41

    探索Python中的聚类算法:层次聚类

    在机器学习领域中,层次聚类是一种常用的聚类算法,它能够以层次结构的方式将数据集中的样本点划分为不同的簇。层次聚类的一个优势是它不需要事先指定簇的数量,而是根据数据的特性自动形成簇的层次结构。...本文将详细介绍层次聚类算法的原理、实现步骤以及如何使用 Python 进行编程实践。 什么是层次聚类? 层次聚类是一种自下而上或自上而下的聚类方法,它通过逐步合并或分割样本点来形成一个簇的层次结构。...Python 中的层次聚类实现 下面我们使用 Python 中的 scikit-learn 库来实现一个简单的层次聚类模型: import numpy as np import matplotlib.pyplot...然后,我们构建了一个层次聚类模型,并拟合了数据集。最后,我们使用散点图将数据集的样本点按照所属的簇进行了可视化。...总结 层次聚类是一种强大而灵活的聚类算法,能够以层次结构的方式将数据集中的样本点划分为不同的簇。通过本文的介绍,你已经了解了层次聚类算法的原理、实现步骤以及如何使用 Python 进行编程实践。

    32910

    使用R语言进行聚类的分析

    一:系统聚类分析 1:系统聚类一次形成以后就不能再改变,所以这就需要我们在第一次分析的时候就要比较的准确,因此我们也需要准确率更高更优秀的分类方法. 2:相应的计算量可能会很大,比如说Q型系统聚类法的聚类的过程就是在样本间距离矩阵的计算上进行加深从而进行的...: 动态聚类分析又称为逐步分析法,基本的业务逻辑是先粗略的进行一次分类,然后按照一些局部最优的算法来计算修改不合理的分类,直到分类比较合理为止,比较适用于大样本的Q型聚类分析这样的聚类....三:所使用的R语言函数: 在这里我们使用的是R语言当中提供的动态聚类的函数kmeans()函数,kmeans()函数采用的是K-均值计算法,实际上这是一个逐一进行修改的方法. kmeans()的主要形式是...: kmeans(x,centers,iter.max=10,nstart=1,algorithm=c()) x是数据组成的矩阵或者数据集, centers是聚类的个数或者初始类的中心 iter.max...第二步:使用kmeans()函数进行动态的聚类分析,选择生成类的个数为5个: ? 产生这样的结果: ?

    3.5K110

    使用 Kmeans聚类实现颜色的分割

    之前分享过kmeans算法(传送门:数据挖掘算法—K-Means算法),这期分享一下使用 Kmeans聚类实现颜色的分割,使用 L*a*b* 颜色空间和 K 均值聚类自动分割颜色。...可以使用欧几里德距离度量来测量两种颜色之间的差异。 使用 rgb2lab 将图像转换为 L*a*b* 颜色空间。...lab_he = rgb2lab(he); 步骤 3:用 K 均值聚类对基于 'a*b*' 空间的颜色进行分类 聚类是一种分离对象组的方法。K 均值聚类将每个对象视为在空间中有一个位置。...它将对象划分为若干分区,使每个簇中的对象尽可能彼此靠近,并尽可能远离其他簇中的对象。K 均值聚类要求您指定要划分的簇数和用于量化两个对象之间距离的距离度量。...使用 imsegkmeans 对对象进行聚类以分为三个簇。

    1.6K20

    K-means聚类:原理简单的聚类算法

    对于监督学习而言,回归和分类是两类基本应用场景;对于非监督学习而言,则是聚类和降维。K-means属于聚类算法的一种,通过迭代将样本分为K个互不重叠的子集。...对于K-means聚类而言,首先要确定的第一个参数就是聚类个数K。...根据先验知识,确定样本划分为两类,首先随机选择聚类的中心点 ? 计算样本与中心点的距离,将样本划分为不同的cluster ? 根据划分好的结果,重新计算聚类中心点 ?...随机选取一个样本作为聚类中心 2. 计算每个样本点与该聚类中心的距离,选择距离最大的点作为聚类中心点 3....重复上述步骤,直到选取K个中心点 在scikit-learn中,使用kmeans聚类的代码如下 >>> import matplotlib.pyplot as plt >>> import numpy

    2.5K31

    使用Python实现DBSCAN聚类算法

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,它可以有效地识别具有任意形状的簇,并且能够自动识别噪声点...在本文中,我们将使用Python来实现一个基本的DBSCAN聚类算法,并介绍其原理和实现过程。 什么是DBSCAN算法? DBSCAN算法通过检测数据点的密度来发现簇。...可视化结果 最后,我们可以绘制数据点和聚类结果的可视化图: plt.figure(figsize=(8, 6)) unique_labels = set(labels) colors = [plt.cm.Spectral...,我们了解了DBSCAN聚类算法的基本原理和Python实现方法。...DBSCAN算法是一种强大的聚类算法,能够有效地识别具有任意形状的簇,并且能够自动识别噪声点。

    72110

    使用Python实现层次聚类算法

    在本文中,我们将使用Python来实现一个基本的层次聚类算法,并介绍其原理和实现过程。 什么是层次聚类算法?...层次聚类算法是一种自底向上或自顶向下的聚类方法,它通过计算数据点之间的相似度(距离)来构建一个树形结构,其中每个节点代表一个簇。...在自顶向下的分裂层次聚类中,所有数据点首先被视为一个簇,然后根据它们之间的相似度逐渐分裂成更小的簇,直到每个数据点都成为一个簇。 使用Python实现层次聚类算法 1....层次聚类算法是一种直观且易于理解的聚类方法,适用于各种类型的数据集,并且可以根据需要选择自底向上或自顶向下的聚类策略。通过使用Python的Scipy库,我们可以轻松地计算层次聚类并可视化聚类结果。...希望本文能够帮助读者理解层次聚类算法的基本概念,并能够在实际应用中使用Python实现层次聚类算法。

    39110

    如何正确使用「K均值聚类」?

    聚类算法中的第一门课往往是K均值聚类(K-means),因为其简单高效。本文主要谈几点初学者在使用K均值聚类时需要注意的地方。 1. 输入数据一般需要做缩放,如标准化。...方法1是将分类变量转化为数值型,但缺点在于如果使用独热编码(one hot encoding)可能会导致数据维度大幅度上升,如果使用标签编码(label encoding)无法很好的处理数据中的顺序(order...我个人倾向于后者的看法,K均值虽然易懂,但效果一般,如果多次运行的结果都不稳定,不建议使用K均值。...我做了一个简单的实验,用K均值对某数据进行了5次聚类: km = MiniBatchKMeans(n_clusters=5)for i in range(5): labels = km.fit_predict...上百万个数据点往往可以在数秒钟内完成聚类,推荐Sklearn的实现。 5. 高维数据上的有效性有限。

    1.5K30

    一种另辟蹊径的聚类:EM聚类

    用概率分布去聚类 我们常常谈论聚类,是通过距离去定义,比如K-means,距离判别等;今天我们一起谈谈EM聚类,一种基于统计分布的聚类模型,以统计分布作为设计算法的依据。...可想而知,观测全体即来自多个统计分布的有限混合分布的随机样本,我们很容易抽象描述为不同均值,不同方差的一个或多个正态分布的随机样本。随机样本在正态分布的分布概率是聚类的数学依据。...这样我们从图上直观的了解了:EM聚类。 1,EM聚类是什么?...M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。 3,EM聚类中聚类数目的问题 通常采用BIC信息准则,从数据拟合角度,选择最佳的聚类数目。...4,聚类可视化 对聚类结果可视化,可以直观看出类别分布,一目了然,这里我们介绍三个图形,希望能够对你们更好的产出业务结果,升职加薪。 一以贯之:还是借助开篇的例子和数据吧!

    71120

    如何使用 Keras 实现无监督聚类

    基于当前评估得到的 K-Means 聚类中心,聚类层完成权重值的初始化。 训练聚类模型,同时改善聚类层和编码器。 在找源代码吗?到我的 Github 上看看。...你可能会想,因为输入维度减少到 10, K-Means 算法应该可以以此开始聚类?是的,我们将会使用 K-Means 算法生成聚类中心。它是 10 维特征向量空间的 10 个群组的中心。...正如你所猜测的那样,聚类层的作用类似于用于聚类的K-means,并且该层的权重表示可以通过训练K均值来初始化的聚类质心。 如果您是在Keras中创建自定义图层的新手,那么您可以实施三种强制方法。...对于聚类层,我们初始化它的权重,聚类中心使用k-means对所有图像的特征向量进行训练。...完整的源代码在我的GitHub上,一直读到笔记本的最后,因为您会发现另一种可以同时减少聚类和自动编码器丢失的另一种方法,这种方法被证明对于提高卷积聚类模型的聚类准确性非常有用。

    4K30

    使用轮廓分数提升时间序列聚类的表现

    把看起来相似的波形分组——它们有相似的形状,但欧几里得距离可能不低 距离度量 一般来说,我们希望根据形状对时间序列进行分组,对于这样的聚类-可能希望使用距离度量,如相关性,这些度量或多或少与波形的线性移位无关...在这种情况下,我们可以使用轮廓分数(Silhouette score),它为执行的聚类分配一个分数。我们的目标是使轮廓分数最大化。...轮廓分数接近0:表示数据点在簇内的相似度与簇间的差异相当,可能是重叠的聚类或者不明显的聚类。...欧几里得距离与相关廓形评分的比较 轮廓分数表明基于相关性的距离矩阵在簇数为4时效果最好,而在欧氏距离的情况下效果就不那么明显了结论 总结 在本文中,我们研究了如何使用欧几里得距离和相关度量执行时间序列聚类...如果我们在评估聚类时结合Silhouette,我们可以使聚类步骤更加客观,因为它提供了一种很好的直观方式来查看聚类的分离情况。 作者:Girish Dev Kumar Chaurasiya

    44310

    使用Python实现K均值聚类算法

    在本文中,我们将使用Python来实现一个基本的K均值聚类算法,并介绍其原理和实现过程。 什么是K均值算法?...K均值算法是一种迭代的聚类算法,其基本思想是通过不断迭代优化簇的中心点位置,使得每个样本点到其所属簇的质心的距离最小化。...,我们了解了K均值聚类算法的基本原理和Python实现方法。...K均值算法是一种简单而有效的聚类算法,适用于各种类型的数据集,并且具有较快的运行速度。通过使用Python的NumPy库,我们可以实现K均值算法,并对数据进行聚类分析。...希望本文能够帮助读者理解K均值聚类算法的基本概念,并能够在实际应用中使用Python实现K均值算法。

    27410
    领券