首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Investpy的股票历史数据

Investpy是一个开源的Python库,用于获取和分析股票市场的历史数据。它提供了从多个金融市场中获取股票、基金和货币的历史数据的功能。

Investpy的主要特点包括:

  1. 数据源广泛:Investpy支持从全球范围内的多个金融市场获取数据,包括股票、基金和货币等。
  2. 简单易用:使用Investpy可以轻松地获取指定股票的历史数据,只需提供股票代码和所需时间范围即可。
  3. 数据多样性:Investpy提供了许多有用的数据指标和函数,包括股票的开盘价、收盘价、最高价、最低价、成交量和调整后的收盘价等。
  4. 数据更新:Investpy根据数据源的更新频率自动更新数据,确保您获得最新的股票历史数据。
  5. 数据分析:Investpy提供了一些数据分析工具和函数,可以帮助您对股票历史数据进行分析和可视化。

Investpy的应用场景包括:

  1. 投资者:Investpy可以帮助投资者分析股票的历史数据,为投资决策提供支持。
  2. 研究员:Investpy可以被用于研究股票市场的走势和趋势,发现投资机会。
  3. 数据分析师:Investpy提供了丰富的股票历史数据,可以被数据分析师用于进行数据分析和建模。

腾讯云相关产品和产品介绍链接地址:

腾讯云提供了一系列与云计算相关的产品和服务,以下是一些与股票历史数据相关的推荐产品和链接:

  1. 腾讯云数据库TencentDB:腾讯云数据库提供了可靠的云端数据库服务,适用于存储和处理股票历史数据。了解更多请访问:https://cloud.tencent.com/product/cdb
  2. 腾讯云对象存储COS:腾讯云对象存储服务提供了高可靠性和可扩展性的存储解决方案,适用于存储大量的股票历史数据。了解更多请访问:https://cloud.tencent.com/product/cos
  3. 腾讯云计算引擎CVM:腾讯云计算引擎提供了灵活可扩展的计算能力,可以用于处理和分析股票历史数据。了解更多请访问:https://cloud.tencent.com/product/cvm

请注意,以上仅是一些建议的产品,具体选择应根据您的需求和实际情况进行评估和决策。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 程序化 Options trading 浅尝辄止

    前几天我的前老板 T 跟我聊了下他正在着手筹划的 algo options trading 项目,他拜托我帮他找找合适的工程师。我仔细研读了他的计划书,感觉还有点意思。基本思路是:跟随股票的涨跌趋势,在 该股的 option 市场选择合适的合约下注。如果预测股票上涨,则购买相应的 Call option,否则购买 Put option。他目前有一个运作还不错的策略,在手工执行和测试中。未来,他希望这个项目不仅可以为自己公司的 fund 赚钱,还能逐渐转化成一个平台,简化人们做程序化交易的难度,就像 Robinhood 简化大家买卖股票的难度一样。T 会为他的初始团队提供丰厚的,有竞争力的工资,以及交易系统盈利的一部分作为奖金。

    02

    python股票数据分析_用Python抓取新浪的股票数据「建议收藏」

    最近做数据分析,先是找到了Tushare这个免费开源的第三方财经包,但后来用了几天之后发现,它的日交易历史数据有时候有不准确的情况,查看源代码发现,这个包的数据源是凤凰财经,而对比凤凰网站其站点的数据本身就是有出入的,所以到也不是Tushare的问题。于是百度了一圈,发现很多网友都是获取新浪的股票数据,包括其历史数据和实时数据。于是乎试了一下,发现速度还挺快,没有具体去测时间但从感官上要比Tushare获取的凤凰数据要快得多。并且数据也很丰富,囊括了每只票自上市以来的所有数据,对此Tushare貌似只有三年数据。当然,新浪数据也有不足的地方,细节上没凤凰数据那么丰富,没有价MA5、MA10以及量MA5、MA10等等,最重要的还是缺少每天的交易额。所幸我目前计算所需的数据里还不包括每天交易额。

    02

    R语言股市可视化相关矩阵:最小生成树|附代码数据

    【视频】Copula算法原理和R语言股市收益率相依性可视化分析 R语言时间序列GARCH模型分析股市波动率 【视频】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 R语言量化交易RSI策略:使用支持向量机SVM R语言资产配置: 季度战术资产配置策略研究 R语言动量交易策略分析调整后的数据 TMA三均线股票期货高频交易策略的R语言实现 R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用 R语言基于Garch波动率预测的区制转移交易策略 r语言多均线股票价格量化策略回测 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 Python基于粒子群优化的投资组合优化研究 R语言Fama-French三因子模型实际应用:优化投资组合 R语言动量和马科维茨Markowitz投资组合(Portfolio)模型实现 Python计算股票投资组合的风险价值(VaR) R语言Markowitz马克维茨投资组合理论分析和可视化 R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD R语言深度学习:用keras神经网络回归模型预测时间序列数据 【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析 Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性 数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子 Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测 结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析 深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据 用PyTorch机器学习神经网络分类预测银行客户流失模型 PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据 Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化 Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告 R语言深度学习:用keras神经网络回归模型预测时间序列数据 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST) MATLAB中用BP神经网络预测人体脂肪百分比数据 Python中用PyTorch机器学习神经网络分类预测银行客户流失模型 R语言实现CNN(卷积神经网络)模型进行回归数据分析 SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型 【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析 Python使用神经网络进行简单文本分类 R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析 R语言基于递归神经网络RNN的温度时间序列预测 R语言神经网络模型预测车辆数量时间序列 R语言中的BP神经网络模型分析学生成绩 matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类 R语言实现拟合神经网络预测和结果可视化 用R语言实现神经网络预测股票实例 使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测 python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译 用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

    04

    R语言股市可视化相关矩阵:最小生成树|附代码数据

    【视频】Copula算法原理和R语言股市收益率相依性可视化分析 R语言时间序列GARCH模型分析股市波动率 【视频】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 R语言量化交易RSI策略:使用支持向量机SVM R语言资产配置: 季度战术资产配置策略研究 R语言动量交易策略分析调整后的数据 TMA三均线股票期货高频交易策略的R语言实现 R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用 R语言基于Garch波动率预测的区制转移交易策略 r语言多均线股票价格量化策略回测 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 Python基于粒子群优化的投资组合优化研究 R语言Fama-French三因子模型实际应用:优化投资组合 R语言动量和马科维茨Markowitz投资组合(Portfolio)模型实现 Python计算股票投资组合的风险价值(VaR) R语言Markowitz马克维茨投资组合理论分析和可视化 R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD R语言深度学习:用keras神经网络回归模型预测时间序列数据 【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析 Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性 数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子 Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测 结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析 深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据 用PyTorch机器学习神经网络分类预测银行客户流失模型 PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据 Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化 Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告 R语言深度学习:用keras神经网络回归模型预测时间序列数据 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST) MATLAB中用BP神经网络预测人体脂肪百分比数据 Python中用PyTorch机器学习神经网络分类预测银行客户流失模型 R语言实现CNN(卷积神经网络)模型进行回归数据分析 SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型 【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析 Python使用神经网络进行简单文本分类 R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析 R语言基于递归神经网络RNN的温度时间序列预测 R语言神经网络模型预测车辆数量时间序列 R语言中的BP神经网络模型分析学生成绩 matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类 R语言实现拟合神经网络预测和结果可视化 用R语言实现神经网络预测股票实例 使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测 python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译 用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

    00

    人工智能如何改变华尔街——高盛交易员被机器学习系统解雇?

    【新智元导读】技术正在重塑生活。在各行业都已经开始运用AI提升效率,有“华尔街狼”之称的股票交易员正处在大规模失业的前夜。这一切究竟缘何而起又会如何变革金融业? 去年一整年,我们一直担心AI技术的发展是否会让300万卡车司机丢了工作。不过让人大跌眼镜的是,眼下要丢了工作的不是卡车司机而是华尔街交易商和对冲基金经理,虽然他们有能力购买最贵的跑车,也有能力雇佣 Elton John 参加他们的汉普顿之家聚会。 像高盛一样的金融巨头和许多顶级的对冲基金都在开发人工智能驱动系统。这或许表示AI在市场趋势预测方面的确

    07
    领券