首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Keras在训练深度学习模型时监控性能指标

Keras库提供了一套供深度学习模型训练时的用于监控和汇总的标准性能指标并且开放了接口给开发者使用。 除了为分类和回归问题提供标准的指标以外,Keras还允许用户自定义指标。...这使我们可以在模型训练的过程中实时捕捉模型的性能变化,为训练模型提供了很大的便利。 在本教程中,我会告诉你如何在使用Keras进行深度学习时添加内置指标以及自定义指标并监控这些指标。...完成本教程后,你将掌握以下知识: Keras计算模型指标的工作原理,以及如何在训练模型的过程中监控这些指标。 通过实例掌握Keras为分类问题和回归问题提供的性能评估指标的使用方法。...损失函数和Keras明确定义的性能评估指标都可以当做训练中的性能指标使用。 Keras为回归问题提供的性能评估指标 以下是Keras为回归问题提供的性能评估指标。...Keras Metrics API文档 Keras Metrics的源代码 Keras Loss API文档 Keras Loss的源代码 总结 在本教程中,你应该已经了解到了如何在训练深度学习模型时使用

8K100
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    目标检测第6步-使用keras版RetinaNet训练

    致谢声明 1.本文学习fizyr的github工程《keras-retinanet》,此github工程链接:https://github.com/fizyr/keras-retinanet 此链接中已经具备充分且详细的工程使用指导...0.配置代码运行环境 0.1 硬件配置要求 所有的目标检测工程都需要有较大显存的显卡才能够运行,本文作者在编写此文时使用的是8GB显存的RTX2070显卡。...鲤鱼的标签名叫做fish,人脸的标签名叫human_face,打标签的结果如下图所示。 注意:用方框框住物体时,尽量框住物体的所有部位,例如本文中的鱼,鱼鳍是一个重要特征。...image.png 2.模型训练 2.1 下载并安装Microsoft C++ build 14.0 只有先安装C++的编译工具,才能在Windows系统上安装keras_retinanet库。...image.png 2.3 开始训练 在文件夹keras_RetinaNet中运行cmd,即在Windows资源管理器的路径处输入cmd,按Enter键运行,如下图所示: ?

    3K11

    设备尺寸杂谈:响应性Web设计中的尺寸问题

    目前在为移动设备设计界面时,最头疼的问题莫过于尺寸的问题。我们无法使用固定的尺寸来进行设计,因为不同设备的大小千变万化。但是如果我们了解了设备的物理特性后,这将有助于我们进行更好的设计。 ?...不同的设备可能具有相同的屏幕分辨率,但是他们的物理特性差别却非常大。一代iPad的屏幕尺寸是9.7寸,分辨率为1024*768、132dpi。...通过使用 Resolution Query,可以将小设备同大设备区分开。两个设备的的宽度都是768px,物理尺寸一个是10英寸(iPad),一个却是4.3英寸(HTC)。...通过 Resolution Media Query 和 Width Query 的配合使用,我们能够将具有同样宽度的不同大小的设备区分开,从而来相应的调整设计中的元素布局。...如果得分接近于5,那么是一个中等的设备,物理上的尺寸接近于1张A4纸的大小(21*29.7cm)。

    1.1K20

    如何使用keras,python和深度学习进行多GPU训练

    在使用多GPU训练的时,我更喜欢用mxnet后端(或甚至直接是mxnet库)而不是keras,但这会引入更多配置进行处理。...随着François Chollet’s宣布tensorflow后端对多GPU的支持已经融入到keras v2.0.9时,所有这一切都发生了改变。...正如你所看到的,不仅可以轻松地使用Keras和多个GPU训练深度神经网络,它也是高效的! 注意:在这种情况下,单GPU实验获得的精度略高于多GPU实验。在训练任何随机机器学习模型时,会有一些差异。...总结 在今天的博客文章中,我们学习了如何使用多个GPU来训练基于Keras的深度神经网络。 使用多个GPU使我们能够获得准线性加速。...然而,通过使用Keras和Python的多GPU训练,我们将训练时间减少到16秒,总训练时间为19m3s。 使用Keras启用多GPU培训就像单个函数调用一样简单 - 我建议尽可能使用多GPU培训。

    3.3K20

    防止在训练模型时信息丢失 用于TensorFlow、Keras和PyTorch的检查点教程

    如果你在工作结束时不检查你的训练模式,你将会失去所有的结果!简单来说,如果你想使用你训练的模型,你就需要一些检查点。 FloydHub是一个极其易用的深度学习云计算平台。...短期训练制度(几分钟到几小时) 正常的训练制度(数小时到一整天) 长期训练制度(数天至数周) 短期训练制度 典型的做法是在训练结束时,或者在每个epoch结束时,保存一个检查点。...因为预先清楚我们的检查点策略是很重要的,我将说明我们将要采用的方法: 只保留一个检查点 在每个epoch结束时采取策略 保存具有最佳(最大)验证精确度的那个 如果是这样的小例子,我们可以采用短期的训练制度...注意:这个函数只会保存模型的权重——如果你想保存整个模型或部分组件,你可以在保存模型时查看Keras文档。...根据语义序列化(semantic serialization)的官方文档,最好的做法是只保存权重,这是由于代码重构问题造成的。

    3.2K51

    如何使用keras,python和深度学习进行多GPU训练

    然而,我们对keras最感到受挫的一个原因,是在多GPU环境下使用,因为这是非常重要的。 如果你使用Theano,请忽略它——多GPU训练,这并不会发生。...在使用多GPU训练的时,我更喜欢用mxnet后端(或甚至直接是mxnet库)而不是keras,但这会引入更多配置进行处理。...随着François Chollet’s宣布tensorflow后端对多GPU的支持已经融入到keras v2.0.9时,所有这一切都发生了改变。...正如你所看到的,不仅可以轻松地使用Keras和多个GPU训练深度神经网络,它也是高效的! 注意:在这种情况下,单GPU实验获得的精度略高于多GPU实验。在训练任何随机机器学习模型时,会有一些差异。...然而,通过使用Keras和Python的多GPU训练,我们将训练时间减少到16秒,总训练时间为19m3s。 使用Keras启用多GPU培训就像单个函数调用一样简单 - 我建议尽可能使用多GPU培训。

    2.9K30

    ·关于在Keras中多标签分类器训练准确率问题

    [知乎作答]·关于在Keras中多标签分类器训练准确率问题 本文来自知乎问题 关于在CNN中文本预测sigmoid分类器训练准确率的问题?中笔者的作答,来作为Keras中多标签分类器的使用解析教程。...一、问题描述 关于在CNN中文本预测sigmoid分类器训练准确率的问题? 对于文本多标签多分类问题,目标标签形如[ 0 0 1 0 0 1 0 1 0 1 ]。...二、问题回复 问题中提出的解决多标签多分类问题的解决方法是正确的。但是要注意几点,keras里面使用这种方式的acc是二进制acc,会把多标签当做单标签计算。 什么意思呢?...举个例子,输入一个样本训练,共有十个标签,其中有两个为1,而你预测结果为全部是0,这时你得到准确率为0.8。最后输出的ac是所有样本的平均。可以看出这个准确率是不可信的。...acc是keras输出acc,my_acc是多标签acc,因为使用了数据增强,valacc更高。 由于每个label的比例不同,又测试不同权重重写loss来对比。

    2.1K20

    python在Keras中使用LSTM解决序列问题

    在本文中,我们将了解如何使用LSTM及其不同的变体来解决一对一和多对一的序列问题。  阅读本文后,您将能够基于历史数据解决诸如股价预测,天气预报等问题。...在本节中,我们将看到两种类型的序列问题。首先,我们将了解如何使用单个功能解决一对一的序列问题,然后我们将了解如何使用多个功能解决一对一的序列问题。...首先,我们导入将在本文中使用的必需库: from numpy import arrayfrom keras.preprocessing.text import one_hotfrom keras.preprocessing.sequence...输出中的每个值将是每个输入样本的第三时间步中两个特征值的总和。例如,第一个样本的第三时间步长具有特征9和15,因此输出将为24。...我们将创建一个测试数据点,然后将使用我们的模型对测试点进行预测。 ...print(test_output) 输入的第三时间步长的两个特征的总和为14 + 61 =75。

    3.6K00

    目标检测第5步-使用keras版YOLOv3训练

    致谢声明 1.本文学习Patrick_Lxc的博客《Keras/Tensorflow+python+yolo3训练自己的数据集》并优化其中代码。...作为合格的Ubuntu系统使用者,要求会使用终端Terminal中的命令完成操作。 运行命令mkdir n01440764创建文件夹n01440764。...['fish', 'human_face'] check_1(dirPath) check_2(dirPath, className_list) 1.6 图像压缩 预先压缩好图像,模型训练时不用再临时改变图片大小...3.文件夹keras-yolo3-master中打开终端Terminal,然后运行命令python generateTxtFile.py -dir images_416*416会划分训练集和测试集,并产生与之对应的文本文件...image.png 2.3 开始训练 文件夹keras-yolo3-master中打开终端Terminal,然后运行命令python train.py即可开始训练。

    2.4K12

    python在Keras中使用LSTM解决序列问题

    在本文中,我们将了解如何使用LSTM及其不同的变体来解决一对一和多对一的序列问题。 阅读本文后,您将能够基于历史数据解决诸如股价预测,天气预报等问题。...在本节中,我们将看到两种类型的序列问题。首先,我们将了解如何使用单个功能解决一对一的序列问题,然后我们将了解如何使用多个功能解决一对一的序列问题。...首先,我们导入将在本文中使用的必需库: from numpy import arrayfrom keras.preprocessing.text import one_hotfrom keras.preprocessing.sequence...输出中的每个值将是每个输入样本的第三时间步中两个特征值的总和。例如,第一个样本的第三时间步长具有特征9和15,因此输出将为24。...我们将创建一个测试数据点,然后将使用我们的模型对测试点进行预测。 print(test_output) 输入的第三时间步长的两个特征的总和为14 + 61 =75。

    1.9K20

    Keras-RetinaNet训练自己的数据详细教程

    准备工作: 1、代码开源框架使用的是 fizyr/keras-retinanet 2、Keras版本要2.2.4以上 下面进入正题。...这里提一句,如果在安装时某个包下载安装不成功,自己记下来版本,比如opencv-python 3.4.5.20,可以直接先去利用pip或conda安装,但是一定要记得对应的版本。...(3)模型编译可以使用以下命令: python setup.py build_ext --inplace 编译的时候可能会出现提示,没有某个版本C++的编译器,我提示的时没有2014版,把错误提示直接百度...', type=int, default=1333) 第三部分:模型训练 模型训练可以使用以下命令: python keras_retinanet/bin/train.py csv keras_retinanet...: 1、Retinanet训练自己的数据(2):模型准备

    2.5K20
    领券