首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用OpenVino运行MTCNN

MTCNN(Multi-task Cascaded Convolutional Networks)是一种用于人脸检测和人脸关键点定位的深度学习模型。OpenVino是英特尔开发的一种用于优化和部署深度学习模型的工具套件。通过结合OpenVino和MTCNN,可以实现高效的人脸检测和关键点定位。

MTCNN模型是基于卷积神经网络的级联结构,由三个子网络组成:P-Net、R-Net和O-Net。P-Net用于生成候选框,R-Net用于筛选候选框,O-Net用于进一步筛选并输出人脸框和关键点位置。MTCNN具有较高的准确性和鲁棒性,适用于人脸识别、人脸表情分析、人脸属性分析等应用场景。

OpenVino是一种用于优化和部署深度学习模型的工具套件,它可以将深度学习模型转换为适用于英特尔硬件的优化版本,提高模型的推理速度和效率。OpenVino支持多种硬件平台,包括英特尔的CPU、GPU、VPU等。通过使用OpenVino,可以将MTCNN模型部署到英特尔硬件上,实现高效的人脸检测和关键点定位。

腾讯云提供了一系列与人工智能和深度学习相关的产品和服务,可以帮助开发者快速部署和运行MTCNN模型。其中,推荐的产品是腾讯云AI推理(AI Inference),它提供了高性能的推理服务,支持多种深度学习框架和模型。通过使用AI推理,可以将经过OpenVino优化的MTCNN模型部署到腾讯云上,并通过API调用实现人脸检测和关键点定位功能。

腾讯云AI推理产品介绍链接:https://cloud.tencent.com/product/tia

总结:使用OpenVino运行MTCNN可以实现高效的人脸检测和关键点定位。腾讯云提供了AI推理产品,可以帮助开发者快速部署和运行经过OpenVino优化的MTCNN模型。通过使用腾讯云AI推理,可以实现人脸检测和关键点定位的功能。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

OpenCV中支持的人脸检测方法整理与汇总

自从VJ在2004发表了关于级联分类器实时对象检测的论文以后,级联分类器就在OpenCV中落地生根了,一段时间,特别是OpenCV3.x版本中基于级联分类器的人脸检测一直是标配,虽然大家刚开始看了例子之后觉得这个是一个很实用的功能,但是在实际实用中级联分类器的人脸检测方法则是频频翻车,我自己曾经移植到Android上面玩过,日常就是两个字“翻车”,很多时候都无法达到开发者想要的稳定性与实时性能。但是这个并不妨碍它作为OpenCV3.x的一大关注点,还产生了无数的Demo演示程序。但是如今已经是OpenCV4.x的时代了,那些基于级联分类器的人脸检测演示看上去有点不合时宜,而且效果惨遭以深度神经网络模型人脸检测技术的毒打。OpenCV4中的人脸检测现在支持多种深度神经网络模型,与OpenCV3中的传统人脸检测方法形成鲜明对比。下面我们就来一一介绍一下从OpenCV3到OpenCV4中不同人脸检测技术。

04
  • OpenCV+OpenVINO实现人脸Landmarks实时检测

    自从OpenCV3.3版本引入深度神经网络(DNN)模块之后,OpenCV对DNN模块支持最好的表现之一就是开始支持基于深度学习人脸检测,OpenCV本身提供了两个模型分别是基于Caffe与Tensorflow的,Caffe版本的模型是半精度16位的,tensorflow版本的模型是8位量化的。同时OpenCV通过与OpenVINO IE模型集成实现了底层硬件对对象检测、图像分割、图像分类等常见模型加速推理支持。OpenVINO框架本身提供直接快速开发应用原型的模型库,对很多常见视觉任务都可以做到快速演示支持。说起人脸的Lankmarks提取,最早的OpenCV跟DLib支持的方式都是基于AAM算法实现的68个人脸特征点的拟合模型,另外OpenCV中支持landmark的人脸检测会先加载一个很大的模型文件,然后速度感人,觉得还有很大的改进空间。好处是OpenCV自己提供了一个训练工具,可以自己训练模型。常见的MTCNN同时实现了人脸检测跟landmarks检测,但是只支持5点检测。而OpenVINO自带的Landmark检测模型基于自定义的卷积神经网络实现,取35个人脸各部位关键点。

    03

    『人脸识别系列教程』0·MTCNN讲解

    背景介绍: 人脸检测,解决两个问题:1)识别图片中有没有人脸?2)如果有,人脸在哪?因此,许多人脸应用(人脸识别、面向分析)的基础是人脸检测。 大多数人脸检测采用的流程为两阶段: 1) 找出所有可能是人脸的候选区域 2) 从候选区域中选择出最可能是人脸的区域 本文的主角MTCNN,大致是这种套路,也集成了其优缺点为:准和慢。 MTCNN人脸检测是2016年的论文提出来的,MTCNN的“MT”是指多任务学习(Multi-Task),在同一个任务中同时学习”识别人脸“、”边框回归“、”人脸关键点识别“。相比2015年的CVPR(边框调整和识别人脸分开做)的结构,MTCNN是有创新的。 从工程实践上,MTCNN是一种检测速度和准确率都还不错的算法,算法的推断流程有一定的启发性,在这里给大家分享。(以下用“MTCNN”代指这个算法)本文以Q&A的方式,与你分享一些经验和思考。先列出本文会回答的问题列表:

    02

    如何编译OpenCV4.1.0支持OpenVINO推断引擎加速支持

    OpenVINO自发布以来,依靠其强大的加速性能,在CPU上进行深度学习模型加速优势,迅速受到很多公司与开发者的青睐,但是如何从OpenCV源码编译生成OpenVINO的inferinference engine(IE)加速推理支持的OpenCV版本,一直是很多开发者头疼的事情,很多人都不得不使用OpenVINO官方编译的OpenCV支持版本,无法实现从源码开始的定制化的OpenCV版本编译。本人从2018年12月份开始研究OpenVINO开发技术,上半年也发布一系列的OpenVINO开发技术相关文章,得到了大家热烈响应,今天我们就来很详细的一步一步的教大家如何从OpenCV源码开始在windows10系统下如何编译IE加速版本的OpenCV安装包,并如何配置与测试IE支持之后的OpenCV DNN的卓越性能。

    03
    领券