标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...图1 创建一个辅助函数 现在,让我们创建一个取平均值的函数,并将其处理/转换为字母等级。 图2 现在我们要把这个函数应用到每个学生身上。那么,在列中对每个学生进行循环?不!...pandas applymap()方法 pandas提供了一种将自定义函数应用于列或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。
2.1 map() 类似Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果。...2.2 apply() apply()堪称pandas中最好用的方法,其使用方式跟map()很像,主要传入的主要参数都是接受输入返回输出。...可以看到,这里返回的是单列结果,每个元素是返回值组成的元组,这时若想直接得到各列分开的结果,需要用到zip(*zipped)来解开元组序列,从而得到分离的多列返回值: a, b = zip(*data.apply...三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字
) print(data.shape) 2.1 map() 类似Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果...2.2 apply() apply()堪称pandas中最好用的方法,其使用方式跟map()很像,主要传入的主要参数都是接受输入返回输出。...) 可以看到,这里返回的是单列结果,每个元素是返回值组成的元组,这时若想直接得到各列分开的结果,需要用到zip(*zipped)来解开元组序列,从而得到分离的多列返回值: a, b = zip(*data.apply...三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字:
Pandas主要有两种数据查询选择操作: 基于标签的查询 基于整数的位置索引查询 Pandas在选择列时,无需使用 date[:, columns] 的形式,先使用 : 选择所有行,再指定 columns...:由于数据中包含了时间信息列(date和hour),为了方便操作,我们可以使用以下命令将时间列设置为索引。...: .apply 上面在创建时间索引时便利用了.apply 方法,对date 和 hour列分别进行了数据类型的转换,然后将两个字符串进行了连接,转换为时间。...上述操作返回的列仍然是 MultiIndex,因为此时只有一个站点了,我们可以使用 .xs 方法将列从MultiIndex转换为Index。...箱线图 上图可以看出:不同的要素其值所在范围是不同的,在探索性分析时应分开分析。 除了箱线图之外,Pandas还可以绘制折线图,条形图,饼图,密度分布等。
,但是当与下一个技巧结合使用时,我们将看到单行if的实际用法。...#8 —将lambda应用于DataFrame列 pandas DataFrame是一种可以保存表格数据的结构,例如Excel for Python。...data[‘music’].apply(lambda x: 1 if x == ‘bach’ else 0) 将输出: ? 其中第一列是DataFrame索引,第二列是代表单行if输出的系列。...在第4行,我们 将此函数.apply()应用于DataFrame并指定应将哪些列作为参数传递。 axis=1 告诉pandas它应该跨列评估函数(与之相对 axis=0,后者跨行评估)。...我们将.apply()函数的输出分配给名为“ new_shelf”的新DataFrame列。
就有四列,而且都有名字:name、sex、course、grade,通过这些名字,可以索引到某一列,这些名字称为列(索引),因此,在 dataframe,我更愿意将 index 称为行索引,以此和列索引区分开...创建 dataframe 其实有 N 种方法,没必要一一掌握,毕竟常用的不过两三种,我也不打算把所有的创建方式都说一遍,那样有炫技的嫌疑,按照自己的理解,我把这些创建方式统一分为两大类:按列的方式创建、...按列的方式创建,不过没有上面所讲的那种方式常用。...series 上次漏说了一个重要的操作 apply():对列上的数据作处理,它可以使用 lambda 表达式作为参数,也可以使用已定义函数的函数名称(不需要带上())作为参数,比如我们让每个人的每门课成绩加减...注意 apply() 函数是有返回值的,并且是要用 df['grade'] 接收而不是 df,否则整个 dataframe 只会剩下 grade 这一列。
一、如何使用列表创建⼀个DataFrame # 导入pandas库 import pandas as pd # 创建一个列表,其中包含数据 data = [['A', 1], ['B', 2], ['...C', 3]] # 使用pandas的DataFrame()函数将列表转换为DataFrame df = pd.DataFrame(data, columns=['Letter', 'Number']...Nick', 'John'], 'Age': [20, 21, 19]} # 使用pandas的DataFrame()函数将字典转换为DataFrame df = pd.DataFrame(data)...七、apply() 函数使用方法 如果需要将函数应⽤到DataFrame中的每个数据元素,可以使⽤ apply() 函数以便将函数应⽤于给定dataframe中的每⼀⾏。...Pandas dataframe.append()函数的作⽤是:将其他dataframe的⾏追加到给定的dataframe的末尾,返回⼀个新的dataframe对象。
你没有能力把每一组乘客单独分开,所以使用这种方法可以让你用一种非常简单的方法分析每一组乘客: ? 2 用于数据探索和数据质量评估技巧 在数据科学中,我们常常倾向于从头开始编写我们的数据分析代码。...运行下面的代码: 在数据集中添加新列(.merge) 计算女乘客比例(.apply(female_proportion)) 乘客人数超过一人的团体(df.Ticket.value_counts(...progress_applymap .progress_map 它们与 apply、 applymap 和 map 一样,只是它们将绘制一个进度条。...有一件事可以这么干,那就是把我们的结果导出到Excel中。但是没有使用.to_excel方法。相反,我们使用更流畅的 .to_clipboard(index=False) 将数据复制到剪贴板。...然后在Excel中使用Ctrl + V将数据粘贴到当前电子表格中。
使用pandas Dataframe,可以轻松添加/删除列,切片,建立索引以及处理空值。 现在,我们已经了解了pandas的基本功能,我们将专注于专门用于特征工程的pandas。 !...用于文本提取的apply() pandas的apply() 函数允许在pandas系列上传递函数并将其传递到变量的每个点。 它接受一个函数作为参数,然后将其应用于数据框的行或列。...我们可以将任何函数传递给apply函数的参数,但是我主要使用lambda函数, 这有助于我在单个语句中编写循环和条件。 使用apply和lambda函数,我们可以从列中存在的唯一文本中提取重复凭证。...关于groupby函数的最有用的事情是,我们可以将其与其他函数(例如Apply,Agg,Transform和Filter)结合使用,以执行从数据分析到特征工程的任务。...这就是我们如何创建多个列的方式。在执行这种类型的特征工程时要小心,因为在使用目标变量创建新特征时,模型可能会出现偏差。
如果我们想要将相同的函数应用于Pandas数据帧中整个列的值,我们可以简单地使用 .apply()。Pandas数据帧和Pandas系列(数据帧中的一列)都可以与 .apply() 一起使用。...因此,要点是,在简单地使用 .apply() 函数处理所有内容之前,首先尝试为您的任务找到相应的 NumPy 函数。 将函数应用于多列 有时我们需要使用数据中的多列作为函数的输入。...这比对整个数据帧使用的 .apply() 函数快26倍!! 总结 如果你尝试对Pandas数据帧中的单个列使用 .apply(),请尝试找到更简单的执行方式,例如 df['radius']*2。...或者尝试找到适用于任务的现有NumPy函数。 如果你想要对Pandas数据帧中的多个列使用 .apply(),请尽量避免使用 .apply(,axis=1) 格式。...编写一个独立的函数,可以将NumPy数组作为输入,并直接在Pandas Series(数据帧的列)的 .values 上使用它。 为了方便起见,这是本文中的全部Jupyter笔记本代码。
在实际数据处理中,我们经常需要在DataFrame中添加新的列,以便存储计算结果、合并数据或者进行其他操作。...不同的插入方法: 在Pandas中,插入列并不仅仅是简单地将数据赋值给一个新列。...5 def add_five(age): return age + 5 # 使用apply函数将函数应用到'Age'列,并创建新列'Adjusted_Age' df['Adjusted_Age...'] = df['Age'].apply(add_five) print(df) 这里我们通过apply函数将add_five函数应用到’Age’列的每一行,创建了一个名为’Adjusted_Age’...axis=1) print(result) 这里我们使用concat函数将两个DataFrame沿着列方向连接,创建了一个新的DataFrame。
用read_csv加载这个包含来自音乐流服务的数据的基本 CSV 文件:df = pandas.read_csv('music.csv')现在变量df是 pandas DataFrame:1.2 选择我们可以使用其标签选择任何列...:使用数字选择一行或多行:也可以使用列标签和行号来选择表的任何区域loc:1.3 过滤使用特定值轻松过滤行。...例如,按流派对数据集进行分组,看看每种流派有多少听众和剧目:Pandas 将两个“爵士乐”行组合为一行,由于使用了sum()聚合,因此它将两位爵士乐艺术家的听众和演奏加在一起,并在合并的爵士乐列中显示总和...1.6 从现有列创建新列通常在数据分析过程中,发现需要从现有列中创建新列。Pandas轻松做到。...通过告诉 Pandas 将一列除以另一列,它识别到我们想要做的就是分别划分各个值(即每行的“Plays”值除以该行的“Listeners”值)。
作者:Félix Revert 翻译:Nurhachu Null、张倩 本文转自公众号 机器之心 Pandas 是为了解决数据分析任务而创建的一种基于 NumPy 的工具包,囊括了许多其他工具包的功能,...pandas 最有趣的地方在于里面隐藏了很多包。它是一个核心包,里面有很多其他包的功能。这点很棒,因为你只需要使用 pandas 就可以完成工作。...pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。 如果你早已熟知 python 的使用,可以直接跳到第三段。...更新数据 将第八行名为 column_1 的列替换为「english」 在一行代码中改变多列的值 好了,现在你可以做一些在 excel 中可以轻松访问的事情了。...data.apply(sum) .apply() 会给一个列应用一个函数。 .applymap() 会给表 (DataFrame) 中的所有单元应用一个函数。
如果是查看某列的统计信息,在数据框下加“.”列名即可。...#这里按照等级列进行分组,以求最大值为例,其它的聚合函数类似。...通过APPLY结合lambda表达式生成新列,生成的对象是Series,如有需要可以转换为DataFrame。...结合lambda表达式生成新列 df_apply = pd.DataFrame(df2.groupby(['level', 'rn'], as_index=False).apply(lambda x:...与索引重建 通过APPLY结合lambda表达式生成新列,生成的对象是Series,因为groupby里的分组字段会转为索引,要变为列,需要通过reset_index方法。
titanic_survival = pandas.read_csv("titanic_train.csv") # Pandas库使用NaN(非数字)表示缺失值 # 我们可以使用pandas.isnull...()函数,它获取一个pandas series并返回一系列的True和False age = titanic_survival["Age"] # 使用loc获取的数据时的切片,包括两端的索引对应的数据...# pivot_table 创建一个电子表格样式的数据透视表。...axis = 0或'index': 删除包含缺失值的行 # axis = 1或'columns': 删除包含缺失值的列 # subset 像数组一样,可选的标签沿着要考虑的其他轴,例如,如果要删除行...# 对于标准索引,将使用索引名称(如果设置), # 否则将使用默认的“index”或“level_0”(如果已经使用了“index”)。
这是一个非常基本的条件逻辑,我们需要为lead status创建一个新列。 我们使用Pandas的优化循环函数apply(),但它对我们来说太慢了。...我们可以使用它的一种方式,包装我们之前的函数,在我们传递列时不起作用的函数,并向量化它。它比.apply()快得多,但也比.where()慢了17倍。...向量化选项将在0.1秒多一点的时间内返回列,.apply()将花费12.5秒。嵌套的np.where()解决方案工具179ms。 那么嵌套的多个条件,我们可以向量化吗?可以!...这和最终结果是一样的,只是下面的那个代码更长。 4、使用来自其他行的值 在这个例子中,我们从Excel中重新创建了一个公式: 其中A列表示id,L列表示日期。...5 其他 一种选择是使用apply跨CPU核并行化操作。因此,如果你有一个4核的i7,你可以将你的数据集分成4块,将你的函数应用到每一块,然后将结果合并在一起。注意:这不是一个很好的选择!
# 使用前一个非空值填充:df.fillna(method='ffill') apply自定义函数 Pandas提供了很多数据处理的API,但当提供的API不能满足需求的时候,需要自己编写数据处理函数..., 这个时候可以使用apply函数 apply函数可以接收一个自定义函数, 可以将DataFrame的行/列数据传递给自定义函数处理 apply函数类似于编写一个for循环, 遍历行/列的每一个元素,但比使用...DataFrame中: 使用apply的时候,可以通过axis参数指定按行/ 按列 传入数据 axis = 0 (默认) 按列处理 axis = 1 按行处理,上面是按列都执行了函数 def avg_3...(avg_3_apply) 按一列一列执行结果:(一共两列,所以显示两行结果) 创建一个新的列'new_column',其值为'column1'中每个元素的两倍,当原来的元素大于10的时候,将新列里面的值赋...']=0 或 row['new_column'] 请创建一个两列的DataFrame数据,自定义一个lambda函数用来两列之和,并将最终的结果添加到新的列'sum_columns'当中 import
:pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。...Matplotlib:Matplotlib就是Python绘图库中的佼佼者,它包含了大量的工具,你可以使用这些工具创建各种图形(包括散点图、折线图、直方图、饼图、雷达图等),Python科学计算社区也经常使用它来完成数据可视化的工作...2、数据读取方法 pandas库支持csv和excel的操作;使用的是pd.read_csv的函数 导入numpy,seaborn``matplotlib和pandas读取Womens Clothing...E-Commerce Reviews.csv 参数:index_col=0——第一列为index值 import pandas as pd import matplotlib.pyplot as plt...将Recommended IND推荐产品为1,不推荐0的数据分开 rd = df[df['Recommended IND'] == 1] # recommended nrd = df[df['Recommended
但是很多新手在使用过程中会发现pandas的dataframe的性能并不是很高,而且有时候占用大量内存,并且总喜欢将罪名归于Python身上(lll¬ω¬),今天我这里给大家总结了在使用Pandas的一些技巧和代码优化方法...因此,我们在使用pandas进行计算的时候,如果可以使用内置的矢量方法计算最好选用内置方法,其次可以考虑apply方法,如果对于非轴向的循环可以考虑iterrow方法。...2.数据类型优化 ---- Pandas的内存使用率一直被大家抱怨,特别对于初学者,当机器资源不足的时候,经常会发现相比其他的数据结构,Pandas存储的数据很容易就会爆掉。 ?...在底层的设计中,pandas按照数据类型将列分组形成数据块(blocks)。pandas使用ObjectBlock类来表示包含字符串列的数据块,用FloatBlock类来表示包含浮点型列的数据块。...对于包含数值型数据(比如整型和浮点型)的数据块,pandas会合并这些列,并把它们存储为一个Numpy数组(ndarray)。Numpy数组是在C数组的基础上创建的,其值在内存中是连续存储的。
1.使用自定义函数的原因 Pandas虽然提供了大量处理数据的API,但是当提供的API无法满足需求的时候,这时候就需要使用自定义函数来解决相关的问题 2....,当原来的元素大于10的时候,将新列里面的值赋0 import pandas as pd # 自定义函数 def process_data(x): if x > 10: return...函数用来两列之和,并将最终的结果添加到新的列'sum_columns'当中 import pandas as pd # 创建一个示例 DataFrame data = {'column1'...'列中,然后使用apply方法将该函数应用于DataFrame的每一行 # 编写函数将学生成绩相加 def calculate_overall_score(row): row['Overall...my_function,它接受DataFrame的一行作为参数,并根据某些条件修改该行的值 将年龄大于等于18的人的性别修改为”已成年“; 在Seris中使用apply方法 def my_function
领取专属 10元无门槛券
手把手带您无忧上云