2.1 使用 NumPy 进行插值 NumPy 提供了一些基本的插值函数,例如 numpy.interp 可以进行一维线性插值。...SciPy 进行插值 SciPy 提供了更加全面的插值函数,例如 scipy.interpolate.interp1d 和 scipy.interpolate.CubicSpline。...data # 加载示例图像 image = data.camera() # 使用双线性插值进行图像缩放 zoom_factor = 2 image_zoomed = zoom(image, zoom_factor...2.1 使用 SciPy 进行拟合 SciPy 提供了多种拟合函数,例如 scipy.optimize.curve_fit 可以进行非线性拟合。...实例1:股票价格预测 通过拟合历史股票价格数据,可以预测未来的股票价格。
,最小二乘法,对logistic增长函数进行拟合。...拟合多项式 import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit #自定义函数...from scipy.optimize import curve_fit import pandas as pd #自定义函数 e指数形式 def func(x, a,u, sig): return...由于湖北疑似数据较多,确诊数据准确性较差,我选择了全国除湖北外确诊人数的数据进行拟合,数据来自@人民日报 微博每日发布,把1月21日作为统计第一天,进行数据收集。...在钟南山院士提出拐点后,尝试预测拐点。选择了高斯函数模型,利用python的curve_fit对每日增长的确诊数量进行拟合,预测拐点。
在Python中进行曲线拟合通常涉及使用科学计算库(如NumPy、SciPy)和绘图库(如Matplotlib)。...2、解决方案2.1 曲线拟合用户可以使用Python中的numpy和scipy库来进行曲线拟合。...用户还可以使用scipy.interpolate.interp1d()函数来进行插值,从而得到更平滑的曲线。2.2 插值如果用户想要得到一条不通过所有数据点的拟合曲线,可以使用插值方法。...以下代码片段展示了如何使用指定函数类型进行曲线拟合:import numpy as npimport scipy as spfrom scipy.optimize import curve_fitdef...popt, pcov = curve_fit(linear_func, x, y)# 使用抛物线函数进行拟合popt, pcov = curve_fit(parabolic_func, x, y)
用于预估LTV的计算公式 我们知道,新增用户中只有在后续某天使用产品的用户才有可能在当天进行付费行为,这里把某天使用产品的用户叫当天留存用户,所以对于当天的充值收入来说只可能来自当天留存用户,而当天留存用户的人均付费金额为...>直接利用历史LTV计算和预估x日-LTV 操作流程: 将历史N日-LTV绘制成曲线图 选中曲线右键—>添加趋势线 在趋势线选项中选择合适的模型(我这边选的乘幂,大家可以对数、指数等都对比看看) 趋势预测可以前推和后推...,选前推即可 ?...Python计算及预估LTV 通过Python来计算的话,其实重点也是进行拟合,这里我们 引入scipy的用来进行拟合操作。...from scipy.optimize import curve_fit import matplotlib.pyplot as plt import numpy as np # 定义幂拟合函数, y
大家好,我是小涂,今天给大家分享一篇关于如何使用srs来进行webrtc进行推拉流;不过在这之前,你需要进行srs运行环境搭建,这个可以具体参考srs官网的wiki,我这里就不重复了,如果你有在搭建过程中遇到啥问题.../objs/srs -c conf/rtc2rtmp.conf 先使用ffmpeg终端进行推流和ffplay终端进行拉流操作: 推流: ffmpeg -re -i time.flv -vcodec...flv -y rtmp://192.168.32.128/live/livestream 拉流: ffplay rtmp://192.168.32.128/live/livestream 接下来使用...rtc播放器: srs播放器: 二、使用webrtc进行推流: 这里直接使用srs网页版命令进行推流的话,我现在的浏览器是不支持的,因为没有使⽤https+域名的⽅式,所以在使⽤WebRTC时需要修改...--unsafely-treat-insecure-origin-as-secure="http://192.168.32.128:8080" 配置好这个之后,关闭浏览器,然后再重新打开浏览器,就可以进行推流了
最近因为做项目的需要,要做一些数据预测,因此就去学习了一下相关的知识。主要就是采用LSTM来做时间序列的预测。...模型搭建如下: 然后就是对数据进行预处理(归一化),接着进行训练。在训练的时候采用了一些小技巧:采用了学习率逐渐衰减的方式,使得loss更小。...在不同epoch下,对2017年的数据进行预测的结果像下面的图片中所示的那样:(根据之前60天的真实数据来预测第二天的数据) 其中,蓝色的是真实曲线,绿色的是预测曲线。...预测接下来一个月的英镑汇率 上面的股价预测,是基于前面60天的真实数据来预测下一天的真实数据。那么要是预测接下来一个月的汇率呢?...由于预测的是接下来的30天,并且汇率本身的变化程度就比较小(每天相差几分钱),因此,在测试集上,只能说是预测的变化趋势基本一致,但是具体的值的话,预测的不准。
使用 Serverless 进行 AI 预测推理 概览 在 AI 项目中,通常大家关注的都是怎么进行训练、怎么调优模型、怎么来达到满意的识别率。...对于 AI 项目来说,落地到实际项目中,就是将训练的模型,投入到生产环境中,使用生成环境的数据,根据模型进行推理预测,满足业务需求。...同时,云函数按执行时间进行计费的方式,也可以更进一步的节约费用使用,避免为长时间空闲的 GPU 设备付费。...,或者使用url传入的图片地址,将图片下载到本地后交由 TensorFlow 进行预测推理。...使用 API 网关进行 API 封装 接下来我们通过 API 网关服务,来创建一个 API 对刚刚创建的推理函数进行封装,并对外提供 API 服务。
scipy.optimize 模块的 curve_fit 函数可以用于曲线/曲面拟合。...曲线拟合示例: import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit def...popt), "r-", label='fit') plt.legend() plt.title("曲线拟合") plt.show() 曲面拟合示例: import numpy as np from scipy.optimize...import curve_fit from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt from matplotlib...np.linspace(-10,5,10) # Z = 5*X*X + 5*Y*Y + 5*X*Y + 5*X + 5*Y + 5 + 20*np.random.normal(size=(len(X))) # 进行曲面拟合
我们可以使用 scipy.optimize.minimize_scalar 函数来实现这一目标。...多变量函数最小化 对于多变量函数的最小化,我们可以使用 scipy.optimize.minimize 函数。...import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit # 定义目标函数 def...curve_fit 进行曲线拟合 params, covariance = curve_fit(func, x, y) # 输出拟合参数 a_fit, b_fit, c_fit = params print...curve_fit 函数会返回拟合参数。 5. 总结 Scipy 的优化模块提供了多种工具,适用于不同类型的优化问题。通过本篇博客的介绍,你可以更好地理解和使用 Scipy 中的优化功能。
在扩展库numpy和scipy中都有poly1d,用法一样,实际上是同一个库,scipy是基于numpy的。有图为证 本文代码主要演示如何使用poly1d进行多项式计算和符号计算。...>>> from scipy import poly1d >>> p1 = poly1d([1,2,3,4]) # 输出结果中,第一行的数字为第二行对应位置项中x的指数 >>> print(p1)...) >>> p2 = poly1d([1,2,3,4], True) >>> print(p2) 4 3 2 1 x - 10 x + 35 x - 50 x + 24 # 使用
您打算用于评估预测的性能指标(例如均方误差)。 准备好之后,您需要选择一个朴素的方法,您可以使用此方法进行预测并计算基准性能。...与时间序列数据集一起使用的等效技术是持久性算法。 持久性算法使用前一时间步 的值来预测下一时间步 的预期结果。 这满足了上述三个基准线预测的条件。...我们可以看到,第一行(索引0)的数据将被剔除,因为在第一个数据点之前没有用于进行预测的数据点。...我们使用前向验证方法来做到这一点。 不需要进行模型训练或再训练,所以本质上,我们按照时间序列逐步完成测试数据集并得到预测。...一旦完成对训练数据集中的每个时间点进预测,就将其与预期值进行比较,并计算均方差(MSE)。
Python Scipy 中级教程:插值和拟合 Scipy 提供了丰富的插值和拟合工具,用于处理实验数据、平滑曲线、构建插值函数等。...非线性最小二乘拟合 对于更一般的拟合问题,Scipy 提供了 scipy.optimize.curve_fit 函数来进行非线性最小二乘拟合。...from scipy.optimize import curve_fit # 定义目标函数 def target_function(x, a, b, c): return a * np.exp...target_function(x, 2.5, 1.3, 0.5) + 0.2 * np.random.normal(size=len(x)) # 非线性最小二乘拟合 params, covariance = curve_fit...curve_fit 函数会返回拟合参数。 5. 总结 通过本篇博客的介绍,你可以更好地理解和使用 Scipy 中的插值和拟合工具。这些功能在处理实验数据、平滑曲线以及构建数学模型等方面具有广泛的应用。
多项式回归:使用高阶多项式函数来逼近数据点,基本思想是通过不断增加多项式的阶数来提高拟合精度。 傅里叶级数拟合:将复杂的函数拆解成多个简单的正弦和余弦函数的和,通过求解系数来实现拟合。...Python也有相应的库,如NumPy和SciPy,提供线性拟合、多项式拟合和对数拟合等功能。...理解拟合与插值的区别,并掌握常用的拟合算法及其应用场景,对于进行有效的数据建模和分析至关重要。 最小二乘法在不同数据分布下的性能表现如何?...然而,对于这些非正态分布的数据,最小二乘法可能需要进行适当的转换或使用加权最小二乘法以提高其性能。 在帕累托分布中,最小二乘法可能不那么有效,因为它偏向于取值较大的数据点。...更新参数: 使用高斯-牛顿迭代公式来更新参数 θθ:Δθ=(JTJ)−1JTrΔθ=(JTJ)−1JTr.然后将新的参数值 θk+Δθθk+Δθ 应用到模型中。
简介 前面讲到了在Android平台下使用FFmpeg进行RTMP推流(视频文件推流),里面主要是介绍如何解析视频文件并进行推流,今天要给大家介绍如何在Android平台下获取采集的图像,并进行编码推流...学习本章之前最好先看之前的文章,这里是一套连贯的教程 RTMP服务器搭建(crtmpserver和nginx) 音视频编码相关名词详解 基于FFmpeg进行RTMP推流(一) 基于FFmpeg进行RTMP...推流(二) Linux下FFmpeg编译以及Android平台下使用 Android平台下使用FFmpeg进行RTMP推流(视频文件推流) 打开摄像头并设置参数 具体代码查看CameraActivity.java...这里我们使用H264进行视频编码。...(ofmt_ctx, pCodec)这个就和之前的推文件流一样了。
在本文中,将介绍skforecast并演示了如何使用它在时间序列数据上生成预测。skforecast库的一个有价值的特性是它能够使用没有日期时间索引的数据进行训练和预测。...所以对五个模型进行超参数调优和选择滞后是一个简单的过程。...步长指定进入未来进行预测的步数。它表示预测范围或模型应该预测的时间步数。...,除梯度增强外,所有模型都产生了平线的预测。...这里的原因有很多,比如说对于其他几个模型,因为我们是介绍skforecast,所以没有设置全部的超参数,导致可能还没有拟合,这个可以再进行调整。
标签:Python与Excel,pandas 在金融行业工作的人每天都在处理现金流预测,但大多是用Excel。事实上,Excel确实易于使用且透明。...用于现金流预测的Python工具 我们可以使用列表或pandas库来预测现金流。可能还有其他工具或库,有兴趣的可以进一步研究,但这里只使用列表和pandas。...这里,我们只是演示这个想法,实际上我们应该使用pandas(或numpy)来模拟现金流预测。...我们有一个30年的现金流预测。...pandas建模 使用pandas创建现金流预测比仅使用列表更容易,因为我们可以使用一些内置的方法。
我们设立4组不同的β值和γ值进行预测,并对结果进行比较: 在这四组预测中,第一组与我们之前做的预测是相同的。...使用数据拟合参数β和γ 2.1 定义损失函数 下面,我们就来定义损失函数,在损失函数中,我们定义每日的感染者人数的预测值和真实值的均方误差和每日的治愈者人数的预测值和真实值之间的均方误差的和作为总的损失值...为了获得更好的模型预测效果,我们选从3月8日至3月15日的数据作为训练集,训练模型,并对3月16日至4月3日的疫情进行预测。...所以,为了对更复杂的现实情形进行建模,我们就需要用到更复杂的模型。 4.总结 本案例使用基于网易实时疫情播报平台爬取的数据,进行新冠肺炎疫情数据的建模分析。...利用Scipy建立了SIR模型并对真实疫情数据中的传染率和恢复率进行了估计。通过本案例,大家可以举一反三,运用Scipy实现SIR模型,对美国或者英国的疫情数据进行分析,希望大家学有所成!
时间序列预测一直是数据科学领域的一个热门研究课题,广泛应用于能源、金融、交通等诸多行业。传统的统计模型如ARIMA、GARCH等因其简单高效而被广泛使用。...然后,这个组件会在整个网络中重复使用,以进行编码、解码和预测。 了解编码器 在这一步中,模型会将时间序列的过去和协变因素映射到一个密集的表示中。 第一步是进行特征投影。...使用 TiDE 进行预测 现在,让我们在一个小型预测项目中应用 TiDE,并将其性能与 TSMixer 进行比较。...这是文献中广泛使用的时间序列预测基准。它与其他协变量一起跟踪电力变压器的每小时油温,是进行多元预测的绝佳场景。 导入库并读取数据 第一步自然是导入项目所需的库并读取数据。...我们使用了一个名为Etth1的标准数据集,在96个时间步长的范围内进行评估。
时序预测是一个经典的话题,应用面也很广; 结合LSTM来做也是一个效果比较好的方式. 这次准备使用TF来进行时序预测,计划写两篇: 1....使用Tensorflow Time Series模块 2. 使用底层点的LSTM Cell 这就是第一篇啦,Time Series Prediction via TFTS....对于第一种: TFTS中可以使用NumpyReader x = np.array(range(1000)) noise = np.random.uniform(-0.2, 0.2, 1000) y =...训练、验证(对训练集进行)、测试: ar.train(input_fn=train_input_fn, steps=1000) evaluation_input_fn = tf.contrib.timeseries.WholeDatasetInputFn...红色是预测的那一段.
简介 前面已经讲到如何在Linux环境下编译FFmpeg以及在Android项目中使用,这一节就开始真正的使用FFmpeg。在Android平台下用FFmepg解析视频文件并进行RTMP推流。...RTMP推流(二)中使用的代码一致,我们直接拷贝过来即可。...至于FFmpeg的使用,这里就不重复讲了,不懂的可以看之前的文章。源码见末尾 异常处理 在我们之前的推流代码中,并没有做异常处理。这样在正式的使用中肯定不太好的。所以我们加上try catch。...统一进行资源释放。源码见末尾 设置回调方法 为了方便我们查看推流的信息,我们新增一个回调类。...而我们需要在推流的时候使用到这个对象,所以需要转化成全局变量 pushCallback = env->NewGlobalRef(pushCallback1); 同样也需要定义对应的全局变量 jobject
领取专属 10元无门槛券
手把手带您无忧上云