首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    第四范式OpenMLDB: 拓展Spark源码实现高性能Join

    和mapGroups接口(注意Spark 2.0以下不支持此API),同时如果有额外的排序字段还可以取得每个组的最大值或最小值。...OpenMLDB使用了定制优化的Spark distribution,其中依赖的Spark源码也在Github中开源 GitHub - 4paradigm/spark at v3.0.0-openmldb...源码中,还有一些语法检查类和优化器类都会检查内部支持的join type,因此在Analyzer.scala、Optimizer.scala、basicLogicalOperators.scala、SparkStrategies.scala...从结果上看性能差异已经没有那么明显了,但LastJoin还是会比前者方案快接近一倍,前面两组右表数据量比较小被Spark优化成broadcast join实现,最后一组没有优化会使用sorge merge...技术总结 最后简单总结下,OpenMLDB项目通过理解和修改Spark源码,可以根据业务场景来实现新的拼表算法逻辑,从性能上看比使用原生Spark接口实现性能可以有巨大的提升。

    1.1K20

    如何使用Excel将某几列有值的标题显示到新列中

    如果我们有好几列有内容,而我们希望在新列中将有内容的列的标题显示出来,那么我们怎么做呢? Excel - TEXTJOIN function 1....- - - - 4 - - - 在开始,我们曾经使用INDEX + MATCH的方式,但是没有成功,一直是N/A https://superuser.com/questions/1300246/if-cell-contains-value-then-column-header...所以我们后来改为TEXTJOIN函数,他可以显示值,也可以显示值的标题,还可以多个列有值的时候同时显示。...- - 4 - - - 15 Year 5 - - - - 5 - - - =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),$B$1:$I$1,"")) 如果是想要显示值,...则: =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),B2:I2,"")) 其中,ISNUMBER(B2:I2)是判断值是不是数字,可以根据情况改成是不是空白ISBLANK

    11.3K40

    Databircks连城:Spark SQL结构化数据分析

    Spark SQL外部数据源API的一大优势在于,可以将查询中的各种信息下推至数据源处,从而充分利用数据源自身的优化能力来完成列剪枝、过滤条件下推等优化,实现减少IO、提高执行效率的目的。...值得注意的是,不仅Python API有了显著的性能提升,即便是使用Scala,DataFrame API的版本也要比RDD API快一倍。...减少数据读取 分析大数据,最快的方法就是——忽略它。这里的“忽略”并不是熟视无睹,而是根据查询条件进行恰当的剪枝。...上文讨论分区表时提到的分区剪枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。...简单来说,在这类数据格式中,数据是分段保存的,每段数据都带有最大值、最小值、null值数量等一些基本的统计信息。

    1.9K101

    一文了解函数式查询优化器Spark SQL Catalyst

    就使用broadcastHashJoin 基于代价优化/Cost Based Optimizer/CBO 针对每个join评估当前两张表使用每种join策略的代价,根据代价估算确定一种代价最小的方案 不同...parser切词 Spark 1.x版本使用的是Scala原生的Parser Combinator构建词法和语法分析器,而Spark 2.x版本使用的是第三方语法解析器工具ANTLR4。...然后在parsePlan过程中,使用AstBuilder.scala将ParseTree转换成catalyst表达式逻辑计划LogicalPlan。...Analyzer会再次遍历整个AST,对树上的每个节点进行数据类型绑定以及函数绑定,比如people词素会根据元数据表信息解析为包含age、id以及name三列的表,people.age会被解析为数据类型为...比如join算子,spark根据不同场景为该算子制定了不同的算法策略,有broadcastHashJoin、shuffleHashJoin以及sortMergeJoin,物理执行计划实际上就是在这些具体实现中挑选一个耗时最小的算法实现

    3K20

    键值对操作

    Spark 有一组类似的操作,可以组合具有相同键的值。这些操作返回 RDD,因此它们是转化操作而不是行动操作。...Spark 始终尝试根据集群的大小推断出一个有意义的默认值,但是有时候你可能要对并行度进行调优来获取更好的性能表现。 如何调节分区数(并行度)呢?...注意: 如果你发现自己写出了先使用 groupByKey() 然后再对值使用 reduce() 或者 fold() 的代码,你很有可能可以通过使用一种根据键进行聚合的函数来更高效地实现同样的效果。...这些操作列在了下表: 5. 数据分区 在分布式程序中,通信的代价是很大的,因此控制数据分布以获得最少的网络传输可以极大地提升整体性能。...(2)从分区中获益的操作 Spark 的许多操作都引入了将数据根据键跨节点进行混洗的过程。所有这些操作都会从 数 据 分 区 中 获 益。

    3.5K30

    深入理解XGBoost:分布式实现

    6)实现了求解带权值的分位数近似算法(weighted quantile sketch)。 7)可根据样本自动学习缺失值的分裂方向,进行缺失值处理。...count():返回DataFrame行数。 describe(cols:String*):计算数值型列的统计信息,包括数量、均值、标准差、最小值、最大值。...missing:数据集中指定为缺省值的值(注意,此处为XGBoost会将 missing值作为缺省值,在训练之前会将missing值置为空)。 模型训练完成之后,可将模型文件进行保存以供预测时使用。...MLlib还提供了非常丰富的算法,包括分类、回归、聚类、协同过滤、降维等,用户可以根据应用场景将这些算法和XGBoost结合使用。...例如,设置k值为3,CrossValidator将产生3组数据,每组数据中的2/3作为训练集进行训练,1/3作为测试集进行测试。CrossValidator计算3组数据训练模型的评估准则的平均值。

    4.2K30

    大数据入门与实战-Spark上手

    这可以通过减少对磁盘的读/写操作次数来实现。它将中间处理数据存储在存储器中。 支持多种语言 --Spark提供Java,Scala或Python内置API。因此,您可以用不同的语言编写应用程序。...2. 2 MapReduce中的数据共享速度很慢 MapReduce被广泛用于在集群上使用并行分布式算法处理和生成大型数据集。它允许用户使用一组高级操作符编写并行计算,而不必担心工作分配和容错。...MapReduce上的交互操作 2. 5 使用Spark RDD进行数据共享 由于复制,序列化和磁盘IO,MapReduce中的数据共享速度很慢。...其他的这里不再一一列举,想要了解更多的,大家可以看下:Spark核心编程 4.5 RDD 操作 -reduce(func):使用函数func(它接受两个参数并返回一个)来聚合数据集的元素。...5.2 打开Spark-Shell 以下命令用于打开spark shell。通常,使用Scala构建spark。因此,Spark程序在Scala环境中运行。

    1.1K20

    独家 | PySpark和SparkSQL基础:如何利用Python编程执行Spark(附代码)

    作者:Pinar Ersoy 翻译:孙韬淳 校对:陈振东 本文约2500字,建议阅读10分钟 本文通过介绍Apache Spark在Python中的应用来讲解如何利用PySpark包执行常用函数来进行数据处理工作...Apache Spark是一个对开发者提供完备的库和API的集群计算系统,并且支持多种语言,包括Java,Python,R和Scala。...表格中的重复值可以使用dropDuplicates()函数来消除。...列的删除可通过两种方式实现:在drop()函数中添加一个组列名,或在drop函数中指出具体的列。...分区缩减可以用coalesce(self, numPartitions, shuffle=False)函数进行处理,这使得新的RDD有一个减少了的分区数(它是一个确定的值)。

    13.7K21

    如何管理Spark的分区

    当我们使用Spark加载数据源并进行一些列转换时,Spark会将数据拆分为多个分区Partition,并在分区上并行执行计算。..., partitionExprs: _*) } 解释 返回一个按照指定分区列的新的DataSet,具体的分区数量有参数spark.sql.shuffle.partitions默认指定,该默认值为200...repartition除了可以指定具体的分区数之外,还可以指定具体的分区字段。我们可以使用下面的示例来探究如何使用特定的列对DataFrame进行重新分区。...对于大数据,200很小,无法有效使用群集中的所有资源 一般情况下,我们可以通过将集群中的CPU数量乘以2、3或4来确定分区的数量。...如果要将数据写出到文件系统中,则可以选择一个分区大小,以创建合理大小的文件。 该使用哪种方法进行重分区呢?

    2K10

    Spark强大的函数扩展功能

    然而,针对特定领域进行数据分析的函数扩展,Spark提供了更好地置放之处,那就是所谓的“UDF(User Defined Function)”。 UDF的引入极大地丰富了Spark SQL的表现力。...尤其采用SQL语句去执行数据分析时,UDF帮助我们在SQL函数与Scala函数之间左右逢源,还可以在一定程度上化解不同数据源具有歧异函数的尴尬。想想不同关系数据库处理日期或时间的函数名称吧!...例如上面len函数的参数bookTitle,虽然是一个普通的字符串,但当其代入到Spark SQL的语句中,实参`title`实际上是表中的一个列(可以是列的别名)。...此时,UDF的定义也不相同,不能直接定义Scala函数,而是要用定义在org.apache.spark.sql.functions中的udf方法来接收一个函数。...,deterministic是一个布尔值,用以标记针对给定的一组输入,UDAF是否总是生成相同的结果。

    2.2K40

    Spark SQL发展史

    Hive底层基于MapReduce实现SQL功能,能够让数据分析人员,以及数据开发人员,方便的使用Hive进行数据仓库的建模和建设,然后使用SQL模型针对数据仓库中的数据进行统计和分析。...Spark SQL的性能优化技术简介 1、内存列存储(in-memory columnar storage) 内存列存储意味着,Spark SQL的数据,不是使用Java对象的方式来进行存储,而是使用面向列的内存存储的方式来进行存储...也就是说,每一列,作为一个数据存储的单位。从而大大优化了内存使用的效率。采用了内存列存储之后,减少了对内存的消耗,也就避免了gc大量数据的性能开销。...3、Scala代码编写的优化 对于Scala代码编写中,可能会造成较大性能开销的地方,自己重写,使用更加复杂的方式,来获取更好的性能。...同时Spark SQL还可以作为分布式的SQL查询引擎。Spark SQL最重要的功能之一,就是从Hive中查询数据。 DataFrame,可以理解为是,以列的形式组织的,分布式的数据集合。

    61220

    spark dataframe操作集锦(提取前几行,合并,入库等)

    首先加载数据集,然后在提取数据集的前几行过程中,才找到limit的函数。 而合并就用到union函数,重新入库,就是registerTemple注册成表,再进行写入到HIVE中。...scala> val fes = hiveContext.sql(sqlss) fes: org.apache.spark.sql.DataFrame = [caller_num: string, is_sr...集合所有的行 3、 count() 返回一个number类型的,返回dataframe集合的行数 4、 describe(cols: String*) 返回一个通过数学计算的类表值(count, mean...1、 cache()同步数据的内存 2、 columns 返回一个string类型的数组,返回值是所有列的名字 3、 dtypes返回一个string类型的二维数组,返回值是所有列的名字以及类型 4、 ...:String*)将参数中的几个字段返回一个新的dataframe类型的, 13、 unpersist() 返回dataframe.this.type 类型,去除模式中的数据 14、 unpersist

    1.4K30
    领券