首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Tensorflow SavedModel模型的保存与加载

这两天搜索了不少关于Tensorflow模型保存与加载的资料,发现很多资料都是关于checkpoints模型格式的,而最新的SavedModel模型格式则资料较少,为此总结一下TensorFlow如何保存...其主要优点是SaveModel与语言无关,比如可以使用python语言训练模型,然后在Java中非常方便的加载模型。当然这也不是说checkpoints模型格式做不到,只是在跨语言时比较麻烦。...另外如果使用Tensorflow Serving server来部署模型,必须选择SavedModel格式。 SavedModel包含啥?...saved_model.pb 保存 为了简单起见,我们使用一个非常简单的手写识别代码作为示例,代码如下: from tensorflow.examples.tutorials.mnist import...要保存该模型,我们还需要对代码作一点小小的改动。 添加命名 在输入和输出Ops中添加名称,这样我们在加载时可以方便的按名称引用操作。

5.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Tensorflow加载预训练模型和保存模型

    大家好,又见面了,我是你们的朋友全栈君。 使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow...因此,在导入模型时,也要分为2步:构造网络图和加载参数 3.1 构造网络图 一个比较笨的方法是,手敲代码,实现跟模型一模一样的图结构。其实,我们既然已经保存了图,那就没必要在去手写一次图结构代码。...Above statement will print the saved value 执行后,打印如下: [ 0.51480412 -0.56989086] 4 使用恢复的模型 前面我们理解了如何保存和恢复模型.../checkpoint_dir/MyModel',global_step=1000) 接下来我们使用graph.get_tensor_by_name()方法来操纵这个保存的模型。

    1.5K30

    Tensorflow加载预训练模型和保存模型

    使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow...因此,在导入模型时,也要分为2步:构造网络图和加载参数 3.1 构造网络图 一个比较笨的方法是,手敲代码,实现跟模型一模一样的图结构。其实,我们既然已经保存了图,那就没必要在去手写一次图结构代码。...Above statement will print the saved value 执行后,打印如下: [ 0.51480412 -0.56989086] 4 使用恢复的模型 前面我们理解了如何保存和恢复模型.../checkpoint_dir/MyModel',global_step=1000) 接下来我们使用graph.get_tensor_by_name()方法来操纵这个保存的模型。

    3K30

    使用OpenCV加载TensorFlow2模型

    Suaro希望使用OpenCV来实现模型加载与推演,但是没有成功,因此开了issue寻求我的帮助。...使用OpenCV加载模型 OpenCV在3.0的版本时引入了一个dnn模块,实现了一些基本的神经网络模型layer。在最新的4.5版本中,dnn模块使用函数 readNet 实现模型加载。...不过根据官方解释,OpenCV不支持TensorFlow所推荐的模型保存格式 saved_model 。所以在加载模型之前,模型需要首先被冻结。...冻结网络 在之前的文章“TensorFlow如何冻结网络模型”中介绍过了冻结网络的具体含义以及原理。但是在TensorFlow2中网络冻结似乎被弃用了,文中提到的冻结脚本也无法使用。...加载并推演 网络冻结完成后,并可以使用OpenCV加载推演了。

    1.7K20

    使用Tensorflow 2.0 Reimagine Plutarch

    研究了使用gensim库训练自己的单词嵌入。在这里将主要关注利用TensorFlow 2.0平台的嵌入层一词; 目的是更好地了解该层如何工作以及它如何为更大的NLP模型的成功做出贡献。...模型 最后,构建并运行模型。TensorFlow提供了一个很好的教程,正在适应需求。...已经读过这样的数组可以保存并在另一个模型中使用 - 是的它可以,但是在跳过新模型中的嵌入步骤之外,不太确定实用程序,因为为每个单词生成的向量是对待解决的问题不可知: import numpy as np...前面提到的TensorFlow教程使用评论数据集,每个评论标记为1或0,具体取决于积极或消极的情绪。...嵌入层也可用于加载预训练的字嵌入(例如GloVe,BERT,FastText,ELMo),认为这通常是一种更有效的方式来利用需要这种嵌入的模型 - 部分归因于“工业级” “生成它们所需的工作量和数据大小

    1.2K30

    使用TensorFlow 2.0的简单BERT

    作者 | Gailly Nemes 来源 | Medium 这篇文章展示了使用TensorFlow 2.0的BERT [1]嵌入的简单用法。...由于TensorFlow 2.0最近已发布,该模块旨在使用基于高级Keras API的简单易用的模型。在一本很长的NoteBook中描述了BERT的先前用法,该NoteBook实现了电影评论预测。...在这里,仅需几个步骤即可实现该模块的用法。 Module imports 将使用最新的TensorFlow(2.0+)和TensorFlow Hub(0.7+),因此,可能需要在系统中进行升级。...在这里,可以看到 bert_layer 可以像其他任何Keras层一样在更复杂的模型中使用。 该模型的目标是使用预训练的BERT生成嵌入向量。...中的合并嵌入与第一个标记的嵌入之间的差异为0.0276。 总结 这篇文章介绍了一个简单的,基于Keras的,基于TensorFlow 2.0的高级BERT嵌入模型。

    8.5K10

    Tensorflow笔记:模型保存、加载和Fine-tune

    前言 尝试过迁移学习的同学们都知道,Tensorflow的模型保存加载有不同格式,使用方法也不一样,新手会觉得乱七八糟,所以本文做一个梳理。从模型的保存到加载,再到使用,力求理清这个流程。 1....保存 Tensorflow的保存分为三种:1. checkpoint模式;2. pb模式;3. saved_model模式。...我们先说后一个,如果你不光有模型文件,还有源码,可以把源码构建模型那部分复制过来,然后只加载变量就好,这是手动重新搭建网络结构: import tensorflow as tf size = 10 #...Fine-tune 最后不管保存还是加载模型,多数情况都是为了能够进行迁移学习。其实大部分无非就是将模型加载进来之后,使用某一个节点的值,作为我们后续模型的输入呗。...比如我要用前面的模型结果作为特征通过一元罗辑回归去预测z,这样新的网络结构就是这样: import numpy as np import tensorflow as tf # 加载模型部分,直接从pb

    1.9K41

    TensorFlow2.0(12):模型保存与序列化

    :误差计算:损失函数总结 TensorFlow2.0(9):神器级可视化工具TensorBoard TensorFlow2.0(10):加载自定义图片数据集到Dataset TensorFlow2.0...save()方法可以将模型保存到一个指定文件中,保存的内容包括: 模型的结构 模型的权重参数 通过compile()方法配置的模型训练参数 优化器及其状态 model.save('mymodels/mnist.h5...需要使用模型时,通过keras.models.load_model()方法从文件中再次加载即可。...新加载出来的new_model在结构、功能、参数各方面与model是一样的。 通过save()方法,也可以将模型保存为SavedModel 格式。...optimizer=keras.optimizers.RMSprop()) new_model.load_weights('mymodels/mnits_weights') # 将保存好的权重信息加载的新的模型中

    1.8K10

    【tensorflow2.0】AutoGraph的使用规范

    有三种计算图的构建方式:静态计算图,动态计算图,以及Autograph。 TensorFlow 2.0主要使用的是动态计算图和Autograph。 动态计算图易于调试,编码效率较高,但执行效率偏低。...我们将着重介绍Autograph的编码规范和Autograph转换成静态图的原理。 并介绍使用tf.Module来更好地构建Autograph。 本篇我们介绍使用Autograph的编码规范。...一,Autograph编码规范总结 1,被@tf.function修饰的函数应尽可能使用TensorFlow中的函数而不是Python中的其他函数。...例如使用tf.print而不是print,使用tf.range而不是range,使用tf.constant(True)而不是True. 2,避免在@tf.function修饰的函数内部定义tf.Variable...二,Autograph编码规范解析 1,被@tf.function修饰的函数应尽量使用TensorFlow中的函数而不是Python中的其他函数。

    60630

    tensorflow学习笔记(三十四):Saver(保存与加载模型)

    Saver tensorflow 中的 Saver 对象是用于 参数保存和恢复的。如何使用呢? 这里介绍了一些基本的用法。...这里使用了三种不同的方式来创建 saver 对象, 但是它们内部的原理是一样的。我们都知道,参数会保存到 checkpoint 文件中,通过键值对的形式在 checkpoint中存放着。...checkpoint 中保存了什么 from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file...import tensorflow as tf # Create some variables. v1 = tf.Variable(1.0, name="v1") v2 = tf.Variable(2.0...2.0 1.0,如我们所望 我们发现,其实 创建 saver对象时使用的键值对就是表达了一种对应关系: save时, 表示:variable的值应该保存到 checkpoint文件中的哪个 key下

    1.4K80

    AIDog改造手记:使用TensorFlow 2.0

    - 官方文档 经过这些研究,确定在微信小程序中使用TensorFlow是可行的,接下来,我准备将AIDog小程序改造一番,主要改造两点: 将训练模型的python脚本改造为使用TensorFlow 2.0...API编写 使用tensorflow.js取代原来的微信小程序 + TensorFlow serving模式 经过紧锣密鼓的开发,TensorFlow已经进化到2.0 beta版本,虽然不是最终正式版...尝鲜TensorFlow 2.0 [译]高效的TensorFlow 2.0:应用最佳实践以及有什么变化 [译]标准化Keras:TensorFlow 2.0中的高级API指南 构建模型 AIDog是机器学习中图像分类的一种应用...回过头去看以前的retrain.py脚本,写得相当复杂,当时我也是根据TensorFlow文档,在现有脚本上修改。这次使用TensorFlow 2.0进行改写,当然采用推荐的keras接口进行实现。...有一点需要注意,Google Colab目前默认使用的是TensorFlow r1.14的版本,如果要使用TensorFlow 2.0 beta版本,需要在开始位置执行: !

    93920

    模型保存,加载和使用

    [阿里DIN] 模型保存,加载和使用 0x00 摘要 Deep Interest Network(DIN)是阿里妈妈精准定向检索及基础算法团队在2017年6月提出的。...本系列文章会解读论文以及源码,顺便梳理一些深度学习相关概念和TensorFlow的实现。 本文是系列第 12 篇 :介绍DIN模型的保存,加载和使用。...0x01 TensorFlow模型 1.1 模型文件 TensorFlow模型会保存在checkpoint相关文件中。...当某个保存的TensorFlow模型文件被删除时,这个模型所对应的文件名也会从checkpoint文件中删除。...它先加载模型文件; 提供checkpoint文件地址后,它从checkpoint文件读取权重数据初始化到模型里的权重变量; 将权重变量转换成权重常量 (因为常量能随模型一起保存在同一个文件里); 再通过指定的输出节点将没用于输出推理的

    1.4K10

    TensorFlow 加载多个模型的方法

    采用 TensorFlow 的时候,有时候我们需要加载的不止是一个模型,那么如何加载多个模型呢?...此外,就是提供正确的模型保存路径位置。另外,如果我们希望在不同机器使用模型,那么还需要设置参数:clear_device=True。...接着,我们就可以通过之前命名的名字或者是保存到的集合名字来调用保存的运算或者是权值参数了。如果使用了领域,那么还需要包含领域的名字才行。...如果使用加载单个模型的方式去加载多个模型,那么就会出现变量冲突的错误,也无法工作。这个问题的原因是因为一个默认图的缘故。冲突的发生是因为我们将所有变量都加载到当前会话采用的默认图中。...因此,如果我们希望加载多个模型,那么我们需要做的就是把他们加载在不同的图,然后在不同会话中使用它们。 这里,自定义一个类来完成加载指定路径的模型到一个局部图的操作。

    2.7K50

    Tensorflow2——模型的保存和恢复

    模型的保存和恢复 1、保存整个模型 2、仅仅保存模型的架构(框架) 3、仅仅保存模型的权重 4、在训练期间保存检查点 1、保存整个模型 1)整个模型保存到一个文件中,其中包含权重值,模型配置以及优化器的配置...,这样,您就可以为模型设置检查点,并稍后从完全相同的状态进行训练,而无需访问原始代码 2)在keras中保存完全可以正常的使用模型非常有用,您可以在tensorflow.js中加载他们,然后在网络浏览器中训练和运行它们...3)keras中使用HDF5标准提供基本的保存格式 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt...model.save("less_model.h5") 如何去使用保存好的模型呢?...,您便可以使用经过训练的模型,而无需重新训练该模型,或者是从上次暂停的地方继续训练,以防止训练过程终端 回调函数:tf.keras.callbacks.ModelCheckpoint 来控制他的训练过程

    1K20

    【Tensorflow】数据及模型的保存和恢复

    Tensorflow 是当前最流行的机器学习框架,它自然支持这种需求。 Tensorflow 通过 tf.train.Saver 这个模块进行数据的保存和恢复。它有 2 个核心方法。...假设我们程序的计算图是 a * b + c ? a、b、d、e 都是变量,现在要保存它们的值,怎么用 Tensorflow 的代码实现呢?...数据的保存 import tensorflow as tf a = tf.get_variable("a",[1]) b = tf.get_variable("b",[1]) c = tf.get_variable...e %f" % e.eval()) test_restore(saver) 调用 Saver.restore() 方法就可以了,同样需要传递一个 session 对象,第二个参数是被保存的模型数据的路径...上面是最简单的变量保存例子,在实际工作当中,模型当中的变量会更多,但基本上的流程不会脱离这个最简化的流程。

    89630

    使用TensorFlow 2.0构建深音频降噪器

    在本文中,使用卷积神经网络(CNN)解决了语音降噪问题。给定有噪声的输入信号,目标是建立一个统计模型,该模型可以提取干净信号(源)并将其返回给用户。...在这里,着重于将常规语音信号与在城市街道环境中经常发现的十种不同类型的噪声进行信号源分离。 数据集 对于语音降噪问题,使用了两个流行的公开音频数据集。...梅尔频率倒谱系数(MFCC)和恒定Q频谱是音频应用中经常使用的两种流行表示。对于深度学习,可以避免使用经典的MFCC,因为它们会删除大量信息并且不保留空间关系。...少量训练参数和模型体系结构的结合,使该模型非常轻巧,执行速度快,尤其是在移动或边缘设备上。 网络生成输出估算值后,将优化(最小化)输出信号与目标信号(纯音频)之间的均方差(MSE)。...通过遵循本文中描述的方法,以相对较小的努力即可达到可接受的结果。轻量级模型的优势使其对于边缘应用程序很有趣。下一步,希望探索新的损失函数和模型训练程序。 可以在此处获取完整的代码。

    3.4K20
    领券