首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在MNIST数据集上使用Pytorch中的Autoencoder进行维度操作

这将有助于更好地理解并帮助在将来为任何ML问题建立直觉。 ? 首先构建一个简单的自动编码器来压缩MNIST数据集。使用自动编码器,通过编码器传递输入数据,该编码器对输入进行压缩表示。...然后该表示通过解码器以重建输入数据。通常,编码器和解码器将使用神经网络构建,然后在示例数据上进行训练。 但这些编码器和解码器到底是什么? ?...请注意,MNIST数据集的图像尺寸为28 * 28,因此将通过将这些图像展平为784(即28 * 28 = 784)长度向量来训练自动编码器。...此外,来自此数据集的图像已经标准化,使得值介于0和1之间。 由于图像在0和1之间归一化,我们需要在输出层上使用sigmoid激活来获得与此输入值范围匹配的值。...由于要比较输入和输出图像中的像素值,因此使用适用于回归任务的损失将是最有益的。回归就是比较数量而不是概率值。

3.5K20

使用Google的Quickdraw创建MNIST样式数据集!

对于那些运行深度学习模型的人来说,MNIST是无处不在的。手写数字的数据集有许多用途,从基准测试的算法(在数千篇论文中引用)到可视化,比拿破仑的1812年进军更为普遍。...图纸如下所示: 构建您自己的QuickDraw数据集 我想了解您如何使用这些图纸并创建自己的MNIST数据集。...这是一个简短的python gist ,我用来阅读.npy文件并将它们组合起来创建一个可以用来替代MNIST的含有80,000个图像的数据集。...它们以hdf5格式保存,这种格式是跨平台的,经常用于深度学习。 用QuickDraw代替MNIST 我使用这个数据集代替MNIST。...在Keras 教程中,使用Python中的自动编码器进行一些工作。下图显示了顶部的原始图像,并使用自动编码器在底部显示重建的图像。 接下来我使用了一个R语言的变分自编码器的数据集。

1.7K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pytorch 基于NiN的服饰识别(使用Fashion-MNIST数据集)

    本文内容:Pytorch 基于NiN的服饰识别(使用Fashion-MNIST数据集) 更多内容请见 Pytorch 基于LeNet的手写数字识别 Pytorch 基于AlexNet的服饰识别(使用...Fashion-MNIST数据集) Pytorch 基于VGG-16的服饰识别(使用Fashion-MNIST数据集) ---- 本文目录 介绍 1.导入相关库 2.定义 NiN 网络结构 3.下载并配置数据集和加载器...数据集: Fashion-MNIST 是一个替代 MNIST 手写数字集的图像数据集。 它是由 Zalando(一家德国的时尚科技公司)旗下的研究部门提供。...其涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。 Fashion-MNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致。...Network In Network (NIN) 是由 Min Lin 等人于 2014 年提出,在 CIFAR-10 和 CIFAR-100 分类任务中达到当时的最好水平,其网络结构是由三个多层感知机

    51210

    Pytorch 基于AlexNet的服饰识别(使用Fashion-MNIST数据集)

    本文内容:Pytorch 基于AlexNet的服饰识别(使用Fashion-MNIST数据集) 更多内容请见 Python sklearn实现SVM鸢尾花分类 Python sklearn实现K-means...数据集: Fashion-MNIST 是一个替代 MNIST 手写数字集的图像数据集。 它是由 Zalando(一家德国的时尚科技公司)旗下的研究部门提供。...其涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。 Fashion-MNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致。...AlexNet 中包含了几个比较新的技术点,也首次在 CNN 中成功应用了 ReLU、Dropout 和 LRN 等 Trick。同时 AlexNet 也使用了GPU进行运算加速。...由于 AlexNet 是为处理 ImageNet 数据集设计的,所以输入图片尺寸应为 224*224,这里我们将 28*28 的 Fashion-MNIST 图片拉大到 224*224。

    81320

    TypeError: module object is not callable (pytorch在进行MNIST数据集预览时出现的错误)

    在使用pytorch在对MNIST数据集进行预览时,出现了TypeError: 'module' object is not callable的错误: 上报错信息图如下: [在这里插入图片描述...] 从图中可以看出,报错位置为第35行,也就是如下位置的错误: images, labels = next(iter(data_loader_train)) 在经过多次的检查发现,引起MNIST数据集无法显现的问题不是由于这一行所引起的...,而是由于缺少了对图片进行处理,在加载数据代码的前添加上如下的代码: transform = transforms.Compose([ transforms.ToTensor(),...: 1.获取手写数字的训练集和测试集 # 2.root 存放下载的数据集的路径 # 3.transform用于指定导入数据集需要对数据进行哪种操作 # 4.train是指定在数据集下完成后需要载入数据哪部分...# 获取数据 data_train=datasets.MNIST(root='.

    2K20

    Pytorch 基于ResNet-18的服饰识别(使用Fashion-MNIST数据集)

    本文内容:Pytorch 基于ResNet-18的服饰识别(使用Fashion-MNIST数据集) 更多内容请见 Pytorch 基于AlexNet的服饰识别(使用Fashion-MNIST数据集...) Pytorch 基于VGG-16的服饰识别(使用Fashion-MNIST数据集) Pytorch 基于NiN的服饰识别(使用Fashion-MNIST数据集) ---- 本文目录 介绍 1.导入相关库...2.定义 ResNet-18 网络结构 3.下载并配置数据集和加载器 4.定义训练函数 5.训练模型(或加载模型) 6.可视化展示 7.预测图 ---- 介绍 使用到的库: Pytorch matplotlib...数据集: Fashion-MNIST 是一个替代 MNIST 手写数字集的图像数据集。 它是由 Zalando(一家德国的时尚科技公司)旗下的研究部门提供。...其涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。 Fashion-MNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致。

    1K10

    Pytorch 基于VGG-16的服饰识别(使用Fashion-MNIST数据集)

    本文内容:Pytorch 基于VGG的服饰识别(使用Fashion-MNIST数据集) 更多内容请见 Python sklearn实现K-means鸢尾花聚类 Pytorch 基于LeNet的手写数字识别...Pytorch 基于AlexNet的服饰识别(使用Fashion-MNIST数据集) ---- 本文目录 介绍 1.导入相关库 2.定义 VGG-16 网络结构 3.下载并配置数据集和加载器 4.定义训练函数...数据集: Fashion-MNIST 是一个替代 MNIST 手写数字集的图像数据集。 它是由 Zalando(一家德国的时尚科技公司)旗下的研究部门提供。...VGGNet 现在依然经常被用来提取图像特征,该网络训练后的模型参数在其官网上开源了,可以用来在图像分类任务上进行在训练,即:提供了非常好的初始化权重,使用较为广泛。...---- 3.下载并配置数据集和加载器 由于 VGG-16 是为处理 ImageNet 数据集设计的,所以输入图片尺寸应为 224*224,这里我们将 28*28 的 Fashion-MNIST 图片拉大到

    1.2K40

    使用一个特别设计的损失来处理类别不均衡的数据集

    :https://github.com/vandit15/Class-balanced-loss-pytorch 样本的有效数量 在处理长尾数据集(其中大部分样本属于很少的类,而许多其他类的样本非常少)...新添加的样本极有可能是现有样本的近似副本,特别是在训练神经网络时使用大量数据增强(如重新缩放、随机裁剪、翻转等)的时候,很多都是这样的样本。用有效样本数重新加权可以得到较好的结果。...类别均衡损失 如果没有额外的信息,我们不能为每个类设置单独的Beta值,因此,使用整个数据的时候,我们将把它设置为一个特定的值(通常设置为0.9、0.99、0.999、0.9999中的一个)。...实现 在开始实现之前,需要注意的一点是,在使用基于sigmoid的损失进行训练时,使用b=-log(C-1)初始化最后一层的偏差,其中C是类的数量,而不是0。...由于我们没有对数据集本身做任何假设,因此重新加权通常适用于多个数据集和多个损失函数。因此,可以使用更合适的结构来处理类不平衡问题,这一点很重要,因为大多数实际数据集都存在大量的数据不平衡。 ?

    37220

    使用一个特别设计的损失来处理类别不均衡的数据集

    :https://github.com/vandit15/Class-balanced-loss-pytorch 样本的有效数量 在处理长尾数据集(其中大部分样本属于很少的类,而许多其他类的样本非常少)...新添加的样本极有可能是现有样本的近似副本,特别是在训练神经网络时使用大量数据增强(如重新缩放、随机裁剪、翻转等)的时候,很多都是这样的样本。用有效样本数重新加权可以得到较好的结果。...类别均衡损失 如果没有额外的信息,我们不能为每个类设置单独的Beta值,因此,使用整个数据的时候,我们将把它设置为一个特定的值(通常设置为0.9、0.99、0.999、0.9999中的一个)。...实现 在开始实现之前,需要注意的一点是,在使用基于sigmoid的损失进行训练时,使用b=-log(C-1)初始化最后一层的偏差,其中C是类的数量,而不是0。...由于我们没有对数据集本身做任何假设,因此重新加权通常适用于多个数据集和多个损失函数。因此,可以使用更合适的结构来处理类不平衡问题,这一点很重要,因为大多数实际数据集都存在大量的数据不平衡。

    1.4K10

    TensorFlow从0到1 - 15 - 重新思考神经网络初始化

    不仅有“局部最优”的坑,在14 交叉熵损失函数——防止学习缓慢还见识了初始化导致“神经元饱和”的坑。...合适网络初始值,不仅有助于梯度下降法在一个好的“起点”上去寻找最优值,还能避免神经元发生学习饱和。 重新审视标准正态分布 ?...继续使用之前的人为输入数据和网络架构: 将z的表达式展开,初始共有1001项; 人为令输入xj中的500个为0,所以z的表达式最终有501项; 人为令输入xj的其余500个为1,所以z由500项wj和1...z的分布 此时的正态曲线变的非常尖锐,z的可能取值都在0附近,再看Sigmoid曲线就会发现,z在0附近时,σ(z)曲线最“陡”,σ'(z)值越大,学习速度越快。...,最后1项为偏置b,方差为1; z的方差 = 1/n x n/2 + 1 = 3/2; z的标准差 = √(3/2); 结果对比 本篇基于12 TensorFlow构建3层NN玩转MNIST中的实现,单纯性的使用

    1.1K70

    TensorFlow从0到1 | 第十五章 重新思考神经网络初始化

    不仅有“局部最优”的坑,在14 交叉熵损失函数——防止学习缓慢还见识了初始化导致“神经元饱和”的坑。...合适网络初始值,不仅有助于梯度下降法在一个好的“起点”上去寻找最优值,还能避免神经元发生学习饱和。 重新审视标准正态分布 ?...继续使用之前的人为输入数据和网络架构: 将z的表达式展开,初始共有1001项; 人为令输入xj中的500个为0,所以z的表达式最终有501项; 人为令输入xj的其余500个为1,所以z由500项wj和1...此时的正态曲线变的非常尖锐,z的可能取值都在0附近,再看Sigmoid曲线就会发现,z在0附近时,σ(z)曲线最“陡”,σ'(z)值越大,学习速度越快。...= √(3/2); 结果对比 本篇基于12 TensorFlow构建3层NN玩转MNIST中的实现,单纯性的使用N(0,1/sqrt(nin))权重初始化与前者进行了对比,结果如下: ?

    72980

    前端入门机器学习 Tensorflow.js 简明教程

    权重调整的目的就是为了使损失函数达到极小值,所以通常采用“梯度下降”的思想来进行逼近,梯度方向是指函数在某一点变化最显著的方向,但实际的情况往往并没有这么简单,假设下图是一个神经网络的损失函数曲线: 可以看到损失函数的形态...Tensorflow.js分析XOR数据集的部分代码。...运行程序,浏览器中会显示整个训练过程: 由图可以看出loss也就是训练损失已平滑的曲线不断降低,损失越低表示训练结果越接近真实结果。...在编写之前需要在网络上找到mnist数据集,这是经典的手写数字数据集,为我们节约了收集手写数字的图片集。...在如此小的数据集以及训练次数的情况下已经可以达到惊人的效果。 我们在页面画布上可以随意写数字0-9,模型就可以进行判断我们写的是什么数字。

    4.2K43

    TensorFlow从0到1 - 14 - 交叉熵损失函数——防止学习缓慢

    接下来开始使用梯度下降法进行迭代训练,从Epoch-Cost曲线可以看到“损失”快速降低,到第100次时就很低了,到第300次迭代时已经几乎为0,符合预期,如下图: 正常的学习 接下来换一种初始化策略。...接下来的训练Epoch-Cost曲线显示200次迭代后“损失”依然很高,减少缓慢,而最后100次迭代才开始恢复正常的学习,如下图: 学习缓慢 学习缓慢原因分析 单个样本情况下,基于均方误差的二次损失函数为...对此一个简单的策略就是更换损失函数,使用交叉熵损失函数可以明显的改善当发生“严重错误”时导致的学习缓慢,使神经网络的学习更符合人类经验——快速从错误中修正。...交叉熵损失函数定义如下: 交叉熵损失函数 在证明它真的能避免学习缓慢之前,有必要先确认它是否至少可以衡量“损失”,后者并不显而易见。...从另一个角度看,应用交叉熵损失是一种防御性策略,增加训练的稳定性。 应用交叉熵损失并不能改善或避免神经元饱和,而是当输出层神经元发生饱和时,能够避免其学习缓慢的问题。

    85760

    浏览器中的手写数字识别

    这里就不从最简单的线性回归模型开始,而是直接选用卷积神经网络。 和python代码中训练模型的步骤一样,使用TensorFlow.js在浏览器中训练模型的步骤主要有4步: 加载数据。 定义模型结构。...加载数据 有过机器学习知识的朋友,应该对MNIST数据集不陌生,这是一套28x28大小手写数字的灰度图像,包含55000个训练样本,10000个测试样本,另外还有5000个交叉验证数据样本。...tensorflow python提供了一个封装类,可以直接加载MNIST数据集,在TensorFlow.js中需要自己写代码加载: const IMAGE_SIZE = 784; const NUM_CLASSES...图片,该图片是所有MNIST数据集的图像拼接而来(文件很大,大约10M),另外加载一个 mnist_labels_uint8 文本文件,包含所有的MNIST数据集对应的标签。...需要注意的是,这只是一种加载MNIST数据集的方法,你也可以使用一个手写数字一张图片的MNIST数据集,分次加载多个图片文件。

    1.5K80

    简单粗暴上手TensorFlow 2.0,北大学霸力作,必须人手一册!

    :变量的保存与恢复 TensorBoard:训练过程可视化 tf.data :数据集的构建与预处理 数据集对象的建立 数据集对象的预处理 数据集元素的获取与使用 实例:cats_vs_dogs 图像分类...性能对比 TensorFlow.js 环境配置 在浏览器中使用 TensorFlow.js 在 Node.js 中使用 TensorFlow.js 在微信小程序中使用 TensorFlow.js TensorFlow.js...模型复用(Jinpeng) TensorFlow Datasets 数据集载入 Swift for TensorFlow (S4TF) (Huan) S4TF 简介 为什么要使用 Swift 进行 Tensorflow...for TensorFlow S4TF 基础使用 在 Swift 中使用标准的 TensorFlow API 在 Swift 中直接加载 Python 语言库 语言原生支持自动微分 MNIST 数字分类...TensorFlow.jl 环境配置 在 docker 中快速体验 TensorFlow.jl 在 julia 包管理器中安装 TensorFlow.jl TensorFlow.jl 基础使用 MNIST

    1.4K40

    TensorFlow从0到1 | 第十四章:交叉熵损失函数——防止学习缓慢

    学习缓慢 “严重错误”导致学习缓慢 回顾识别MNIST的网络架构,我们采用了经典的S型神经元,以及常见的基于均方误差(MSE)的二次函数作为损失函数。...接下来开始使用梯度下降法进行迭代训练,从Epoch-Cost曲线可以看到“损失”快速降低,到第100次时就很低了,到第300次迭代时已经几乎为0,符合预期,如下图: ? 接下来换一种初始化策略。...观察σ(z)函数曲线会发现,当σ接近于1时,σ曲线特别的平坦,所以此处σ'(z)是一个非常小的值,由上式可推断C的梯度也会非常小,“下降”自然也就会变得缓慢。这种情况也成为神经元饱和。...从另一个角度看,应用交叉熵损失是一种防御性策略,增加训练的稳定性。 应用交叉熵损失并不能改善或避免神经元饱和,而是当输出层神经元发生饱和时,能够避免其学习缓慢的问题。...附完整代码 代码基于 12 TF构建3层NN玩转MNIST中 的tf_12_mnist_nn.py,修改了损失函数,TensorFlow提供了交叉熵的封装: ? ? ? ?

    1.4K70

    搭建浅层神经网络Hello world

    下方为训练集和测试集的数据查看代码: train = pd.read_csv('mnist/mnist_train.csv') # read train test = pd.read_csv('mnist...TensorFlow 提供了 Dataset 类可以方便加载训练的数据,使用方式为 tf.data.Dataset。 其中,训练集的数据,我们进行了随机打乱。...在训练不断迭代的情况下,常量的学习率会导致模型收敛性变差。 在不断的迭代过程中,损失函数 ( loss ) 越来越小,因此我们希望学习率也越来越小,从而能够让模型收敛到一个更好的局部最优点。...蓝色为训练集曲线。...更深的网络层次,可以更换模型,比如使用 VGG16,ResNet 等更深的网络,或者在现有的网络中添加更多的卷积层进行尝试 更多的训练数据,数据量的增长能极大的提高模型的精度跟泛化能力 使用别的优化器,

    61530

    在C#下使用TensorFlow.NET训练自己的数据集

    今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPU 或 GPU 下使用,并针对你们自己本地的图像数据集进行训练和推理...具体每一层的Shape参考下图: 数据集说明 为了模型测试的训练速度考虑,图像数据集主要节选了一小部分的OCR字符(X、Y、Z),数据集的特征如下: · 分类数量:3 classes 【X...我们在会话中运行多个线程,并加入队列管理器进行线程间的文件入队出队操作,并限制队列容量,主线程可以利用队列中的数据进行训练,另一个线程进行本地文件的IO读取,这样可以实现数据的读取和模型的训练是异步的,...· 训练完成的模型对test数据集进行预测,并统计准确率 · 计算图中增加了一个提取预测结果Top-1的概率的节点,最后测试集预测的时候可以把详细的预测数据进行输出,方便实际工程中进行调试和优化...完整代码可以直接用于大家自己的数据集进行训练,已经在工业现场经过大量测试,可以在GPU或CPU环境下运行,只需要更换tensorflow.dll文件即可实现训练环境的切换。

    1.6K20
    领券