首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Pandas进行数据清理的入门示例

本文将介绍以下6个经常使用的数据清理操作: 检查缺失值、检查重复行、处理离群值、检查所有列的数据类型、删除不必要的列、数据不一致处理 第一步,让我们导入库和数据集。...') 检查缺失值 isnull()方法可以用于查看数据框或列中的缺失值。...(df["Duration"]) 删除不必要的列 drop()方法用于从数据框中删除指定的行或列。...Pandas提供字符串方法来处理不一致的数据。 str.lower() & str.upper()这两个函数用于将字符串中的所有字符转换为小写或大写。...使用pandas功能,数据科学家和数据分析师可以简化数据清理工作流程,并确保数据集的质量和完整性。 作者:Python Fundamentals

27760

使用Pandas&NumPy进行数据清洗的6大常用方法

在这个教程中,我们将利用Python的Pandas和Numpy包来进行数据清洗。...() 函数按元素清洗整个数据集 重命名 columns 为一组更易识别的标签 滤除 CSV文件中不必要的 rows 下面是要用到的数据集: BL-Flickr-Images-Book.csv : 一份来自英国图书馆包含关于书籍信息的...改变DataFrame的索引 Pandas索引index扩展了Numpy数组的功能,以允许更多多样化的切分和标记。在很多情况下,使用唯一的值作为索引值识别数据字段是非常有帮助的。...如果condition值为真,那么then将被使用,否则使用else。 它也可以嵌套使用,允许我们基于多个条件进行计算。...掌握数据清洗非常重要,因为它是数据科学的一个大的部分。你现在应该有了一个如何使用pandas和numpy进行数据清洗的基本理解了。更多内容可参考pandas和numpy官网。

3.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Pandas&NumPy进行数据清洗的6大常用方法

    在这个教程中,我们将利用Python的Pandas和Numpy包来进行数据清洗。...() 函数按元素的清洗整个数据集 重命名 columns 为一组更易识别的标签 滤除 CSV文件中不必要的 rows 下面是要用到的数据集: BL-Flickr-Images-Book.csv - 一份来自英国图书馆包含关于书籍信息的...改变DataFrame的索引 Pandas索引index扩展了Numpy数组的功能,以允许更多多样化的切分和标记。在很多情况下,使用唯一的值作为索引值识别数据字段是非常有帮助的。...如果condition值为真,那么then将被使用,否则使用else。 它也可以组网使用,允许我们基于多个条件进行计算。...掌握数据清洗非常重要,因为它是数据科学的一个大的部分。你现在应该有了一个如何使用pandas和numpy进行数据清洗的基本理解了。

    3.5K10

    时间序列的重采样和pandas的resample方法介绍

    下面是resample()方法的基本用法和一些常见的参数: import pandas as pd # 创建一个示例时间序列数据框 data = {'date': pd.date_range(...3、输出结果控制 label参数可以在重采样期间控制输出结果的标签。默认情况下,一些频率使用组内的右边界作为输出标签,而其他频率使用左边界。...假设您有上面生成的每日数据,并希望将其转换为12小时的频率,并在每个间隔内计算“C_0”的总和: df.resample('12H')['C_0'].sum().head(10) 代码将数据重采样为12...('W')['C_0'].transform('rank') result = df.head(10) 使用transform 方法来计算每周组中'C_0'变量的累积和排名。...cumsum函数计算累积和,第二个管道操作计算每个组的'C_1'和'C_0'之间的差值。像管道一样执行顺序操作。

    1.1K30

    Python数据处理神器pandas,图解剖析分组聚合处理

    点击上方"数据大宇宙",设为星标,干货资料,第一时间送到! 前言 身边有许多正在学习 Python 的 pandas 库做数据处理的小伙伴们都遇到一个问题——分组聚合。...在pandas中,为我们提供了一些聚合方法用于处理组数据。 apply apply 只是一种对每个分组进行处理的通用方式。来看看流程动图: apply 方法中传入一个用于处理的方法。...看其流程机制: transform 是为了保持结果的记录行数与原数据保持一致。 transform 流程机制与 agg 几乎一样。区别在于最后的合并。...如果 transform 的处理函数返回是一个值,那么为了与原数据行数保持一致,因此会把组内的值在组内复制(广播)。...如果需要部分被压缩,比如 top n 问题,那么考虑使用 apply 。 ---- 例子 例子1:使用本文的例子数据,如果 value 存在缺失值则用组内均值填充。

    1.3K21

    Pandas速查卡-Python数据科学

    它不仅提供了很多方法和函数,使得处理数据更容易;而且它已经优化了运行速度,与使用Python的内置函数进行数值数据处理相比,这是一个显著的优势。...('1900/1/30', periods=df.shape[0]) 添加日期索引 查看/检查数据 df.head(n) 数据框的前n行 df.tail(n) 数据框的后n行 df.shape() 行数和列数...) df.pivot_table(index=col1,values=[col2,col3],aggfunc=max) 创建一个数据透视表,按col1分组并计算col2和col3的平均值 df.groupby...(col1).agg(np.mean) 查找每个唯一col1组的所有列的平均值 data.apply(np.mean) 在每个列上应用函数 data.apply(np.max,axis=1) 在每行上应用一个函数...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max

    9.2K80

    python数据分析——数据分类汇总与统计

    本文将介绍如何使用Python进行数据分类汇总与统计,帮助读者更好地理解和应用数据。 首先,我们需要导入一些常用的Python库,如pandas、numpy和matplotlib等。...【例9】采用agg()函数对数据集进行聚合操作。 关键技术:采用agg()函数进行聚合操作。agg函数也是我们使用pandas进行数据分析过程中,针对数据分组常用的一条函数。...,'nanjing':['sum','mean']}) 2.2逐列及多函数应用 【例10】同时使用groupby函数和agg函数进行数据聚合操作。...关键技术: groupby函数和agg函数的联用。在我们用pandas对数据进 行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。...groupby函数和agg函数进行数据聚合操作。

    82910

    (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧(本文使用到的所有代码及数据均保存在我的github仓库:https://github.com/CNFeffery...3.1 利用groupby()进行分组   要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法,其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,...可以看到每一个结果都是一个二元组,元组的第一个元素是对应这个分组结果的分组组合方式,第二个元素是分组出的子集数据框,而对于DataFrame.groupby()得到的结果,主要可以进行以下几种操作: ●...● 聚合数据框   对数据框进行聚合时因为有多列,所以要使用字典的方式传入聚合方案: data.agg({'year': ['max','min'], 'count': ['mean','std']})...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字

    5.1K60

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。...譬如这里我们编写一个使用到多列数据的函数用于拼成对于每一行描述性的话,并在apply()用lambda函数传递多个值进编写好的函数中(当调用DataFrame.apply()时,apply()在串行过程中实际处理的是每一行数据...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...可以看到每一个结果都是一个二元组,元组的第一个元素是对应这个分组结果的分组组合方式,第二个元素是分组出的子集数据框,而对于DataFrame.groupby()得到的结果。...聚合数据框 对数据框进行聚合时因为有多列,所以要使用字典的方式传入聚合方案: data.agg({'year': ['max','min'], 'count': ['mean','std']}) ?

    5K10

    多快好省地使用pandas分析大型数据集

    Python大数据分析 1 简介 pandas虽然是个非常流行的数据分析利器,但很多朋友在使用pandas处理较大规模的数据集的时候经常会反映pandas运算“慢”,且内存开销“大”。...特别是很多学生党在使用自己性能一般的笔记本尝试处理大型数据集时,往往会被捉襟见肘的算力所劝退。但其实只要掌握一定的pandas使用技巧,配置一般的机器也有能力hold住大型数据集的分析。...下面我们将循序渐进地探索在内存开销和计算时间成本之间寻求平衡,首先我们不做任何优化,直接使用pandas的read_csv()来读取train.csv文件: import pandas as pd raw...替代pandas进行数据分析」 dask相信很多朋友都有听说过,它的思想与上述的分块处理其实很接近,只不过更加简洁,且对系统资源的调度更加智能,从单机到集群,都可以轻松扩展伸缩。...接下来我们只需要像操纵pandas的数据对象一样正常书写代码,最后加上.compute(),dask便会基于前面搭建好的计算图进行正式的结果运算: ( raw # 按照app和os分组计数

    1.4K40

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。...譬如这里我们编写一个使用到多列数据的函数用于拼成对于每一行描述性的话,并在apply()用lambda函数传递多个值进编写好的函数中(当调用DataFrame.apply()时,apply()在串行过程中实际处理的是每一行数据...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...data['count'].agg(['min','max','median']) 聚合数据框 对数据框进行聚合时因为有多列,所以要使用字典的方式传入聚合方案: data.agg({'year'...False) 可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg

    5.9K31

    30 个 Python 函数,加速你的数据分析处理速度!

    Pandas 是 Python 中最广泛使用的数据分析和操作库。它提供了许多功能和方法,可以加快 「数据分析」 和 「预处理」 步骤。...12.Groupby 函数 Pandas Groupby 函数是一个多功能且易于使用的功能,可帮助获取数据概述。它使浏览数据集和揭示变量之间的基本关系更加容易。 我们将做几个组比函数的示例。...23.数据类型转换 默认情况下,分类数据与对象数据类型一起存储。但是,它可能会导致不必要的内存使用,尤其是当分类变量具有较低的基数。 低基数意味着列与行数相比几乎没有唯一值。...:要显示的最大行数 28.通过列计算百分比变化 pct_change用于计算序列中值的变化百分比。...30.设置数据帧样式 我们可以通过使用返回 Style 对象的 Style 属性来实现此目的,它提供了许多用于格式化和显示数据框的选项。例如,我们可以突出显示最小值或最大值。

    9.4K60

    python数据分析——数据分类汇总与统计

    本文将介绍如何使用Python进行数据分类汇总与统计,帮助读者更好地理解和应用数据。 首先,我们需要导入一些常用的Python库,如pandas、numpy和matplotlib等。...下表是经过优化的groupby方法: 在使用groupby进行分组后,可以使用以下聚合函数进行数据聚合: count():计算每个分组中的非缺失值的数量。...示例二 【例9】采用agg()函数对数据集进行聚合操作。 关键技术:采用agg()函数进行聚合操作。 agg函数也是我们使用pandas进行数据分析过程中,针对数据分组常用的一条函数。...关键技术: groupby函数和agg函数的联用。 在我们用pandas对数据进行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。...groupby函数和agg函数进行数据聚合操作。

    7510

    python 数据分析基础 day15-pandas数据框的使用获取方式1:使用DataFrame.loc

    今天是读《pyhton数据分析基础》的第15天,今天读书笔记的内容为使用pandas模块的数据框类型。 数据框(DataFrame)类型其实就是带标题的列表。...很多时候,整个数据框的数据并不会一次性的用于某一部的分析,而是选用某一列或几列的数据进行分析,此时就需要获取数据框的部分数据。...获取方式如下: 获取方式1:使用DataFrame.loc[] #调用某两行两列交汇的数据 #[index1,index2]表示引用索引号为index1和index2的两行数据 #[colName1,colName2...]表示引用列标题为colName1和colName2的列数据 DataFrame.loc[[index1,index2],[colName1,colName2]] 获取方式2:使用DataFrame.iloc...[] #调用某两行两列交汇的数据 #索引号从0开始算,若为连续的行数,则算头不算尾 #以下行代码所选取的数据相同 #1:3、[1,2]表示行索引号,选取第二行和第三行 #3:5、[3,4]表示列索引号,

    1.7K110

    从小白到大师,这里有一份Pandas入门指南

    Pandas 是一个「开源的、有 BSD 开源协议的库,它为 Python 编程语言提供了高性能、易于使用的数据架构以及数据分析工具」。...内存优化 在处理数据之前,了解数据并为数据框的每一列选择合适的类型是很重要的一步。...它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...「智能」转换器,数据框使用的内存几乎减少了 10 倍(准确地说是 7.34 倍)。...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。

    1.7K30

    从小白到大师,这里有一份Pandas入门指南

    Pandas 是一个「开源的、有 BSD 开源协议的库,它为 Python 编程语言提供了高性能、易于使用的数据架构以及数据分析工具」。...内存优化 在处理数据之前,了解数据并为数据框的每一列选择合适的类型是很重要的一步。...它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...「智能」转换器,数据框使用的内存几乎减少了 10 倍(准确地说是 7.34 倍)。...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。

    1.8K11

    从小白到大师,这里有一份Pandas入门指南

    Pandas 是一个「开源的、有 BSD 开源协议的库,它为 Python 编程语言提供了高性能、易于使用的数据架构以及数据分析工具」。...内存优化 在处理数据之前,了解数据并为数据框的每一列选择合适的类型是很重要的一步。...它可以通过两种简单的方法节省高达 90% 的内存使用: 了解数据框使用的类型; 了解数据框可以使用哪种类型来减少内存的使用(例如,price 这一列值在 0 到 59 之间,只带有一位小数,使用 float64...「智能」转换器,数据框使用的内存几乎减少了 10 倍(准确地说是 7.34 倍)。...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。

    1.7K30
    领券