首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

大数据平台建设

包括: 提供一个共享的模式和数据类型的机制。 抽象出表,使用户不必关心他们的数据怎么存储。 提供可操作的跨数据处理工具,如Pig,MapReduce,Streaming,和Hive。...内部架构 它的特点是高性能、易部署、易使用,存储数据非常方便。主要功能特性有: 面向集合存储,易存储对象类型的数据。 模式自由 支持动态查询 支持完全索引,包含内部对象。 支持查询。...网络(从数学角度叫做图)是一个灵活的数据结构,可以应用更加敏捷和快速的开发模式。 你可以把Neo4j看作是一个高性能的图引擎,该引擎具有成熟和健壮的数据库的所有特性。...Avro是一个数据序列化系统,设计用于支持大 批量数据交换的应用。...数据流 支持使用Hive利用SQL查询存储在Hadoop中的数据 能够兼容ODBC/JDBC和继承已有的分析工具 具有丰富的分析应用,且能够集成已有的分析工具 支持实时的Telemetry

1.1K40

DDIA 读书分享 第四章:编码和演化

Avro 编码逐字节解析 因此,Avro 必须配合模式定义来解析,如 Client-Server 在通信的握手阶段会先交换数据模式。 写入模式和读取模式 没有字段标号,Avro 如何支持模式演进呢?...Avro 两种模式进行匹配 模式演化规则 那么如何保证写入模式的兼容呢? 在增删字段时,只能添加或删除具有默认值的字段。 在更改字段类型时,需要 Avro 支持相应的类型转换。...在数据库表模式发生改变前后,Avro 只需要在导出时依据当时的模式,做相应的转换,生成相应的模式数据即可。但如果使用 PB,则需要自己处理多个备份文件中,字段标号到字段名称的映射关系。...但对于动态语言,或者说解释型语言,如 JavaScript、Ruby 或 Python,由于没有了编译期检查,生成代码的意义没那么大,反而会有一定的冗余。...这时 Avro 这种支持不生成代码的框架就节省一些,它可以将模式写入数据文件,读取时利用 Avro 进行动态解析即可。 模式的优点 模式的本质是显式类型约束,即,先有模式,才能有数据。

1.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Apache大数据项目目录

    它使用可插入的查询转换规则将在关系代数中表示的查询转换为高效的可执行形式。有一个可选的SQL解析器和JDBC驱动程序。Calcite不存储数据或具有首选执行引擎。...您可以使用Apache CouchDB的增量复制有效地分发您的数据或应用程序。Apache CouchDB支持具有自动冲突检测的主 - 主设置。...34 Apache ORC ORC是一种自描述类型感知的列式文件格式,专为Hadoop工作负载而设计。它针对大型流式读取进行了优化,但具有快速查找所需行的集成支持。...以列式格式存储数据使读者只能读取,解压缩和处理当前查询所需的值。...它包括与Apache Spark,Pig,Flume,Map Reduce以及Hadoop生态系统中的其他产品的集成。它作为JDBC驱动程序访问,并允许通过标准SQL查询,更新和管理HBase表。

    1.7K20

    Apache Beam 架构原理及应用实践

    ▌Apache Beam 的优势 1. 统一性 ? ① 统一数据源,现在已经接入的 java 语言的数据源有34种,正在接入的有7种。Python 的13种。...③ 统一大数据引擎,现在支持性最好的是 flink,spark,dataflow 还有其它的大数据引擎接入进来。 2. 可移植性 ?...答案都是可以的。Apache Beam 是具有可扩展性的,零部件都可以重塑。 4. 支持批处理和流处理 ?...流处理应用程序通常在多个读取处理写入阶段处理其数据,每个阶段使用前一阶段的输出作为其输入。通过指定 read_committed 模式,我们可以在所有阶段完成一次处理。...对于某些存储系统,CREATE EXTERNAL TABLE 在写入发生之前不会创建物理表。物理表存在后,您可以使用访问表 SELECT,JOIN 和 INSERT INTO 语句。

    3.5K20

    大数据生态圈常用组件(二):概括介绍、功能特性、适用场景

    无需全部的关系型数据库特性 HBase 不适用于具有join, 多级索引, 表关系复杂的数据模型场景中。 大数据存储 KAFKA KAFKA是一个分布式的流式平台。...Hive表一般使用ORC和Parquet格式,二者都是列式存储,压缩率很低,查询效率较高。...例如在安全应用中侦测异常行为;在金融应用中查找价格、交易量和其他行为的模式。...到处运行 Spark可以使用自带的集群模式运行,也可以在EC2、在Hadoop Yarn上、Mesos上或Kubernetes上运行,同时可以访问HDFS、Alluxio、Cassandra、HBase...而交互式的Python和Scala的Shell可以使用Spark集群来验证解决问题的方法,而不是像以前一样,需要打包、上传集群、验证等。

    1.5K20

    大数据NiFi(十八):离线同步MySQL数据到HDFS

    一、配置“QueryDatabaseTable”处理器 该处理器主要使用提供的SQL语句或者生成SQL语句来查询MySQL中的数据,查询结果转换成Avro格式。该处理器只能运行在主节点上。...) 查询数据库的表名,当使用“Custom Query”时,此为查询结果的别名,并作为FlowFile中的属性。...查询数据库的表名,当使用“Custom Query”时,此为查询结果的别名,并作为FlowFile中的属性。...配置步骤如下: 1、新建“QueryDatabaseTable”处理器 2、配置“SCHEDULING”调度时间 这里调度时间配置为99999s,读取数据库,这里读取一次即可,默认0会不间断读取数据库会对服务器造成非常大压力...JSON字段的直接映射,这样得到的JSON将具有与Avro文档相同的层次结构。

    4.9K91

    【大数据哔哔集20210111】HDFS中的常用压缩算法及区别

    Cloudera 提出过数据压缩的基本准则: 是否压缩数据以及使用何种压缩格式对性能具有重要的影响。...错误处理能力, 有的文件的某一部分坏掉之后会影响整个表, 有的只会影响其后的数据, 有的只会影响坏掉数据块本身(Avro)。...读取和载入效率, RCFile的载入速度慢, 但是查询相应速度快, 相对更适合数据仓库一次插入多次读取的特性。...Avro将模式存储在文件头中,所以每个文件都是自描述的,而且Avro还支持模式演进(schema evolution),也就是说,读取文件的模式不需要与写入文件的模式严格匹配,当有新需求时,可以在模式中加入新的字段...因此,在Hive中使用ORC作为表的文件存储格式,不仅节省HDFS存储资源,查询任务的输入数据量减少,使用的MapTask也就减少了 提供了多种索引,row group index、bloom filter

    1.1K10

    Apache Hudi 0.11 版本重磅发布,新特性速览!

    多模式索引 在 0.11.0 中,默认为 Spark writer 启用具有同步更新的元数据表和基于元数据表的file listing,以提高在大型 Hudi 表上的分区和文件listing的性能。...我们在元数据表中引入了多模式索引,以显着提高文件索引中的查找性能和数据跳过的查询延迟。...Spark 数据源改进 Hudi 的 Spark 低层次集成进行了相当大的改进,整合了通用流程以共享基础架构,并在查询数据时提高了计算和数据吞吐量效率。...没有日志文件的 MOR 查询(增量查询除外)表现为在读取数据时利用矢量化 Parquet 读取器,这意味着 Parquet 读取器现在能够利用现代处理器矢量化指令来进一步加快数据解码速度。默认启用。...这在HoodieDeltaStreamer拖尾 Hive 表而不是提供 avro 模式文件时很有用。 迁移指南 Bundle使用更新 不再正式支持 3.0.x 的 Spark 捆绑包。

    3.5K30

    Apache Hudi多模索引对查询优化高达30倍

    在这篇博客中,我们讨论了我们如何重新构想索引并在 Apache Hudi 0.11.0 版本中构建新的多模式索引,这是用于 Lakehouse 架构的首创高性能索引子系统,以优化查询和写入事务,尤其是对于大宽表而言...鉴于 Hudi 的设计已经针对处理可变更改流进行了高度优化,具有不同的写入模式,Hudi 从一开始就独特地支持索引能力[2]以加快 Lakehouse 的 upserts。...多表事务确保原子性并且对故障具有弹性,因此对数据或元数据表的部分写入永远不会暴露给其他读取或写入事务。元数据表是为自我管理而构建的,因此用户不需要在任何表服务上花费操作周期,包括压缩和清理。...3.2 Data Skipping 元数据表的另一个主要好处是在服务读取查询时帮助跳过数据。...column_stats 分区存储所有数据文件的感兴趣列的统计信息,例如最小值和最大值、总值、空计数、大小等。在使用匹配感兴趣列的谓词提供读取查询时使用统计信息。

    1.6K20

    Grab 基于 Apache Hudi 实现近乎实时的数据分析

    尽管此设置针对可缩放的分析查询模式进行了优化,但由于两个原因,它难以处理对数据的频繁更新: 1. Hive 表格式要求我们使用最新数据重写 Parquet 文件。...例如,要更新 Hive 未分区表中的一条记录,我们需要读取所有数据、更新记录并写回整个数据集。 2. 由于将数据组织为压缩的列格式(比行格式更复杂)的开销,因此编写 Parquet 文件的成本很高。...幸运的是,Hudi 格式的引入允许 Avro 和 Parquet 文件在读取时合并 (MOR) 表上共存,从而支持快速写入,这为拥有数据延迟最小的数据湖提供了可能性。...高吞吐源 对于具有高吞吐量的数据源,我们选择以 MOR 格式写入文件,因为以 Avro 格式写入文件允许快速写入以满足我们的延迟要求。...如图 1 所示,我们使用 Flink 执行流处理,并在设置中以 Avro 格式写出日志文件。

    19610

    Apache Beam 大数据处理一站式分析

    大数据处理涉及大量复杂因素,而Apache Beam恰恰可以降低数据处理的难度,它是一个概念产品,所有使用者都可以根据它的概念继续拓展。...Apache Beam提供了一套统一的API来处理两种数据处理模式(批和流),让我们只需要将注意力专注于数据处理的算法上,而不用再花时间去维护两种数据处理模式上的差异。...它具有很好的灵活性和可扩展性,也对硬件故障和人为失误有很好的容错性。...而它 Apache Beam 的名字是怎么来的呢?就如文章开篇图片所示,Beam 的含义就是统一了批处理和流处理的一个框架。现阶段Beam支持Java、Python和Golang等等。 ?...但这样的实现方法其实无法使用,因为你的数据量可能完全无法放进一个内存哈希表。

    1.6K40

    真香!PySpark整合Apache Hudi实战

    准备 Hudi支持Spark-2.x版本,你可以点击如下链接安装Spark,并使用pyspark启动 # pyspark export PYSPARK_PYTHON=$(which python3) spark...--packages显示指定 spark-avro和spark的版本必须匹配 本示例中,由于依赖spark-avro2.11,因此使用的是scala2.11构建hudi-spark-bundle,如果使用...更新数据 与插入新数据类似,还是使用DataGenerator生成更新数据,然后使用DataFrame写入Hudi表。 # pyspark updates = sc..... \ save(basePath) 注意,现在保存模式现在为 append。通常,除非是第一次尝试创建数据集,否则请始终使用追加模式。每个写操作都会生成一个新的由时间戳表示的commit 。...总结 本篇博文展示了如何使用pyspark来插入、删除、更新Hudi表,有pyspark和Hudi需求的小伙伴不妨一试!

    1.7K20

    Hadoop生态圈一览

    Chukwa : 管理大型分布式系统的数据收集系统 HBase ; 一个可扩展的分布式数据库,支持大表的结构化数据存储 Hive : 一个提供数据概述和AD组织查询的数据仓库 Mahout :可扩展大的机器学习和数据挖掘库...译文:模式 AVro 依赖模式。Avro数据的读写操作是很频繁的,而这些操作都需要使用模式。这样就减少写入每个数据资料的开销,使得序列化快速而又轻巧。...这种数据及其模式的自我描述方便于动态脚本语言,脚本语言,以前数据和它的模式一起使用,是完全的自描述。 当Avro 数据被存储在一个文件中,它的模式也一同被存储。...因此,文件可被任何程序处理,如果程序需要以不同的模式读取数据,这就很容易被解决,因为两模式都是已知的。...当在RPC中使用Avro时,客户端和服务端可以在握手连接时交换模式(这是可选的,因此大多数请求,都没有模式的事实上的发送)。

    1.2K20

    适用于大数据环境的面向 OLAP 的数据库

    Hive 的另一个有助于提高查询性能的功能是存储桶的使用。存储桶是一种在表中水平分区数据的方法。通过将数据划分为存储桶,Hive 可以执行更有针对性的查询并仅检索必要的数据,从而缩短查询时间。...Avro 文件以自描述格式存储数据,其中包括架构定义和数据。这种自描述性质使 Avro 文件具有高度可移植性,并支持数据验证和模式演化。...要使用 Avro 文件作为存储格式创建表,您需要定义数据的架构。...我们来仔细看看RCFile的结构: 列式存储: RCFile 以列式格式存储数据,其中每一列单独存储。这可以实现更好的压缩和查询性能,因为在查询执行期间仅读取所需的列。...它与 Hive 查询引擎和其他 Hive 生态系统组件无缝集成,使 Hive 用户易于使用。 总之,RCFile 是一种功能强大且高效的面向列的文件格式,与传统的面向行的文件格式相比具有显着的优势。

    39220

    Apache Hudi 0.11.0版本重磅发布!

    多模式索引 在 0.11.0 中,我们默认为 Spark writer 启用具有同步更新的元数据表和基于元数据表的file listing,以提高在大型 Hudi 表上的分区和文件 listing 的性能...我们在元数据表中引入了多模式索引,以显着提高文件索引中的查找性能和数据跳过的查询延迟。元数据表中添加了两个新索引 1....• 没有日志文件的 MOR 查询(增量查询除外)表现为在读取数据时利用矢量化 Parquet 读取器,这意味着 Parquet 读取器现在能够利用现代处理器矢量化指令来进一步加快数据解码速度。...有关更多详细信息,请参阅模式演变指南[5]。 Spark SQL改进 • 用户可以使用非主键字段更新或删除 Hudi 表中的记录。 • 现在通过timestamp as of语法支持时间旅行查询。...这在HoodieDeltaStreamer拖尾 Hive 表而不是提供 avro 模式文件时很有用。 迁移指南 Bundle使用更新 不再正式支持 3.0.x 的 Spark Bundle包。

    3.7K40

    Lakehouse架构指南

    与数据湖相比,Lakehouse具有额外的数据治理[15]。它包括集群计算框架和 SQL 查询引擎。更多功能丰富的 Lakehouse 还支持数据目录[16]和最先进的编排[17]。...这些文件格式具有其他功能,例如拆分能力和模式演变。 在选择哪种数据湖文件格式时,Apache Parquet 似乎更占优势。...Avro 也很好,因为它具有复杂的模式描述语言来描述数据结构并支持模式演变。 Schema Evolution 不太重要,因为下一章中的数据湖表格式也支持这些。...你需要对所有文件进行聚类,记录模式,同时读取和更新所有文件,找到一种备份和回滚的方法,以防你犯了错误,编写模拟更新或删除语句的繁重函数等等。...目的是使用 PB 级的大型表来解决长期存在的问题。

    2K20

    ApacheHudi使用问题汇总(二)

    Hudi的模式演进(schema evolution)是什么 Hudi使用 Avro作为记录的内部表示形式,这主要是由于其良好的架构兼容性和演进特性。这也是摄取或ETL管道保持可靠的关键所在。...如果使用的是 DeltaStreamer,则可以在连续模式下运行压缩,在该模式下,会在单个spark任务内同时进行摄取和压缩。 4....对于实时视图(Real time views),性能类似于Hive/Spark/Presto中Avro格式的表。 6....为什么必须进行两种不同的配置才能使Spark与Hudi配合使用 非Hive引擎倾向于自己列举DFS上的文件来查询数据集。例如,Spark直接从文件系统(HDFS或S3)读取路径。...当使用 UseFileSplitsFromInputFormat注解时,Presto会使用输入格式来获取分片,然后继续使用自己的优化/矢量化parquet读取器来查询写时复制表。

    1.8K40

    Yotpo构建零延迟数据湖实践

    这些事件使用Avro编码,并直接发送到Kafka。 3.2 Avro Avro具有可以演变的模式(schema)。在数据库中添加一列可演变模式,但仍向后兼容。...我们更喜欢对数据传输对象使用Avro编码,因为它非常紧凑,并且具有多种数据类型,例如JSON不支持多种数字类型和字节。...在注册新的数据库插件时,数据库的模式已在Schema Registry[7]中注册,它从数据库派生而来并自动将模式转换为Avro。...每当模式发生变更时,都会在Schema Registry特定表添加对应的新版本模式,这方便我们以后浏览不同的模式版本。 3.4 Apache Hudi存储格式 下一部分是处理物化视图。...使用数据湖最大的挑战之一是更新现有数据集中的数据。在经典的基于文件的数据湖体系结构中,当我们要更新一行时,必须读取整个最新数据集并将其重写。

    1.7K30

    《数据密集型应用系统设计》读书笔记(四)

    1 数据编码格式 应用程序通常使用(至少)两种不同的数据表示形式: 在内存中,数据保存在对象、结构体、列表、数组、哈希表和树等结构中。...(新代码兼容旧代码数据)」:当「添加」新的字段到模式时,只要每个字段都有唯一的标签号,新代码总是可以读取旧代码的数据,因为标签号仍然具有相同的含义。...需要注意的是,添加的新字段只能是可选字段(或具有默认值),否则新代码读取旧数据时会出现检查失败;而当删除字段时,不能再次使用已删除的相同标签号码,因为新代码读取旧代码的数据时需要忽略该标签号对应的字段)...reader 可以获取记录,提取版本号,然后从数据库中查询该版本号对应的写模式,使用该模式进行解码。 「通过网络连接发送记录」。...我们可以为每一张数据库表生成对应的记录模式,而每个列成为该记录中的一个字段,数据库中的列名称映射为 Avro 中的字段名称。

    1.9K20
    领券