首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

前端基础篇之CSS世界

我想你每天写css代码有时候也会觉得很痛苦:这个布局的css怎么这么难实现!我也经常会有这种感觉,一个看似简单的布局总是要琢磨半天才能实现,偶尔还会出现一些怪异的超出理解的现象。这是因为我们对css只是大概知道个形,并没有看透css的本质。在同事的推荐下我阅读了张鑫旭老师的《css世界》,才发现css跟想象中的不太一样。本文为《css世界》个人总结笔记,为缩减篇幅丢弃了张老师冗余的小幽默,丢掉了些含金量较低的章节内容,因为ie已经被淘汰出局,所以有关css兼容性的地方也全部忽略不记,同时对个人觉得不易理解的地方加上了一些自己的理解和验证,所以错误之处还望指正。顺便推荐个好用的在线代码编辑工具,国内镜像站点,方便各位对本文实例进行测试。另外本文会随着作者对css的更深入理解而逐步更新,希望到最后能够文如标题展现出真正的css世界。

05

一文掌握css常见布局float、position、flex、grid

css在前端的学习中是一个绕不过去的课题,他决定如何显示的你网页内容,初学css你也许会觉得它很容易,无非就是控制元素的位置,大小,颜色等等表现层面的东西,但当你真正使用它去做一些事前的时候,往往会出现无处下抓的现象,这么多属性,我该使用哪个属性来实现想要的效果呢,更有时候自己以为的效果跟实际出来的效果又有很大差异,有人说css是感性的,确实,它不像javasctipt这种有很强逻辑性的语言,它的很多特性毫无逻辑可以,你只能试出来,从这个角度而言,其实css是很难学的,你需要积累很多很多的场景,才能说可以灵活的使用css,这篇文章就css中最常见的场景---布局,介绍一下集中常见的布局方法。

01

Few-shot Adaptive Faster R-CNN

为了减少由域转移引起的检测性能下降,我们致力于开发一种新的少镜头自适应方法,该方法只需要少量的目标域映射和有限的边界框注释。为此,我们首先观察几个重大挑战。首先,目标域数据严重不足,使得现有的域自适应方法效率低下。其次,目标检测涉及同时定位和分类,进一步复杂化了模型的自适应过程。第三,该模型存在过度适应(类似于用少量数据样本训练时的过度拟合)和不稳定风险,可能导致目标域检测性能下降。为了解决这些挑战,我们首先引入了一个针对源和目标特性的配对机制,以缓解目标域样本不足的问题。然后,我们提出了一个双层模块,使源训练检测器适应目标域:1)基于分割池的图像级自适应模块在不同的位置上均匀提取和对齐成对的局部patch特征,具有不同的尺度和长宽比;2)实例级适配模块对成对的目标特性进行语义对齐,避免类间混淆。同时,采用源模型特征正则化(SMFR)方法,稳定了两个模块的自适应过程。结合这些贡献,提出了一种新型的少拍自适应Fast R-CNN框架,称为FAFRCNN。对多个数据集的实验表明,我们的模型在感兴趣的少镜头域适应(FDA)和非超视域适应(UDA)设置下均获得了最新的性能。

04

ECCV 2022|码流信息辅助的压缩视频超分框架

目前网络上的电影、网络广播、自媒体视频等大部分是分辨率较低的压缩视频,而智能手机、平板电脑、电视等终端设备正逐渐配备 2K、4K 甚至 8K 清晰度的屏幕,因此端侧的视频超分辨率(VSR)算法引起越来越广泛的关注。与图像超分辨率(SISR)相比,视频超分辨率(VSR)可以通过沿视频时间维度利用邻近帧的信息来提高超分辨率的效果。视频超分辨率算法大致可以分为两类:基于滑窗的视频超分算法(Sliding-window)和基于循环神经网络的视频超分算法(Recurrent VSR)。基于滑窗的视频超分算法会重复的提取邻近帧的特征,而基于循环神经网络的视频超分辨率算法避免了重复的特征提取,还可以高效的传递长期时间依赖信息,鉴于端侧运算单元和内存有限的情况来说是一个更具潜力的方案。在视频超分中,视频帧之间的对齐对超分辨率性能有着重要的影响。目前的视频超分算法通过光流估计、可形变卷积、注意力和相关性机制等方式来设计复杂的运动估计网络来提升视频超分的性能。而目前商用终端设备很难为视频超分辨率算法提供足够的计算单元和内存来支撑视频帧之间复杂的运动估计以及大量的冗余特征计算。

02
领券