本次内容介绍条形图的绘制,包括基本条形图、簇状条形图、频数条形图、堆积条形图、百分比条形图。 下次将介绍如何对条形图着色、调整条形图的宽度和间距、添加数据标签等内容。...1绘制基本条形图 演示数据 以gcookbook包中的pg_mean数据集为例。...x轴上的分类变量和一个绘制在y轴上的连续型变量。...有时候,我们想额外添加一个分类变量跟x轴上的分类变量一起对数据进行分组。 此时,可通过将该分类变量映射给fill参数来绘制簇状条形图,这里的fill参数用来指定条形的填充色。...输出图片 3 绘制堆积条形图 演示数据 同上,以gcookbook包中的cabbage_exp数据集为例,该数据集包含两个分类变量Cultivar和Date和一个连续变量Weight。
我们主要使用两个参数控制线条的位置,slope控制斜率,intercept控制截距,下面是一个简单的例子,我们在散点图层上叠加截距为20,斜率为2的直线: library(ggplot2) p <-...y=level))+ geom_area(fill='springgreen') p 实际上面积图最有表现力的类型是堆积面积图,下面以美国5个消费指标上5个年份的数据为例绘制堆积面积图: library...')+ theme(plot.title = element_text(hjust=0.5)) h 2.3 bar() 基础的条形图我们前面一篇中已经涉及到了,所以这里我们只与上述的堆积面积图进行对比...,stat = 'identity')+ labs(title='消费水平')+ theme(plot.title=element_text(hjust=0.5)) p 可以看出这时我们的堆叠条形图便而可以看作离散的堆积面积图...,箱线图是非常有代表性的,它通过图形表现五数概括的情况,在数据基本的描述性统计中具有重要意义,而ggplot2中必然可以绘制箱线图,而且可以绘制得非常精美,下面先看一个最朴素的分组箱线图形式: p <-
23 14 Drug3 9 18 Drug4 15 6 #读入数据 data = read.table("barplot.txt",header=T) #绘制条形图,仔细喊下面没一行代码都生成一个图,看他们的差别会知道参数是干嘛的...为不同的组设置不同的颜色 barplot(data[,2],names.arg = data[,1],main="条形图",xlab="分组",ylab="统计量",col=c("grey","red"...多种分组的柱状图:堆积柱状图 #转换数据 data2 = t(data[,c(2,3)]) #绘制柱状图 barplot(as.matrix(data2)) ?...多种分组的柱状图:非堆积柱状图 #非堆积柱状图 barplot(as.matrix(data2), names.arg = data[,1],main="条形图",xlab="分组",ylab...2 ggplot2绘制 部分数据: Source Year Anomaly10y Unc10y Berkeley 1900 -0.171 0.108 Berkeley 1901 -0.162 0.109
本文介绍基于R语言中的readxl包与ggplot2包,读取Excel表格文件数据,并绘制具有多个系列的柱状图、条形图的方法。 ...首先,我们配置一下所需用到的R语言readxl包与ggplot2包;其中,readxl包是用来读取Excel表格文件数据的,而ggplot2包则是用以绘制柱状图的。...此外,如果大家是使用RStudio软件进行代码的撰写,还可以双击这一变量,更直观地查看读入后的数据具体是什么样子的,如下图所示。 接下来,我们需要对数据加以长、宽转换。...这里我们就直接通过ggplot2包的ggplot()函数,对柱状图加以绘制即可;具体代码如下所示。...接下来,加号后面的geom_bar参数,是我们绘制多序列柱状图所需要设定的,其中position参数设置为"dodge"就表示我们希望将不同的系列平行放置(如果不设置position参数,那么不同系列的柱子就会垂直堆积
对于条形图而言 ,有的时候我们展示的是数据集种变量的数值,有的时候展示的却是频数,但是他们的术语又相同,这一点及其容易造成混乱。...本章将以ggplot2为主进行学习啦~~ ---- 3.1 绘制基本条形图 Q:当你有一个包含两列的数据框,一列为x轴上的位置,一列为y轴上的对应高度,基于此如何绘制条形图?...Q:如何绘制基于某些分类变量的簇状条形图?...Q:如何绘制堆积条形图?...scale_fill_brewer(palette = 'Pastel1') 3.8 绘制百分比堆积条形图 Q:如何绘制可展示百分比的堆积条形图?
如果您不想在行或列维度中进行构面,请使用。 而不是变量名,例如facet_grid(.〜cyl)。 Genometric Objects 两个图包含相同的x变量,相同的y变量,并且都描述相同的数据。...但情节并不完全相同。 每个图使用不同的可视对象来表示数据。 在ggplot2语法中,我们说它们使用不同的geom。 geom是绘图用于表示数据的几何对象。 人们经常根据情节使用的几何类型来描绘情节。...例如,条形图使用条形图,折线图使用线条图,箱形图使用箱形图格栅等。 散点图打破了这一趋势; 他们使用点geom。 如上所述,您可以使用不同的geom来绘制相同的数据。...geom_smooth()将为您映射到linetype的变量的每个唯一值绘制一个不同的线型,具有不同的线型。...许多geom,如geom_smooth(),使用单个几何对象来显示多行数据。对于这些geoms,您可以将组审美设置为分类变量以绘制多个对象。 ggplot2将为分组变量的每个唯一值绘制一个单独的对象。
堆积的直方图 (Stacked histograms) 和重叠的密度曲线(overlapping densities) 可以对较小数量的分布进行更深入的比较,尽管堆积的直方图很难解释,最好避免。...另外,堆叠的条形图基本使用所有情况,如果是比例沿连续性变量进行变化的时候,使用堆叠的密度图是可以的。 ?...对于成对的数据,沿x和y轴的变量以相同单位测量,通常添加一条表示x = y的线通常会有所帮助。 ? 对于大量的点,常规的散点图可能会由于点过多,就容易看不清趋势。...另一方面,当我们要可视化两个以上的变量时,我们可以选择以相关图而不是基础原始数据的形式绘制相关系数。 ? 当x轴表示时间或严格增加的变量(例如治疗剂量)时,我们通常绘制线图。...如果我们有两个响应变量的时间序列,我们可以绘制一个连接的散点图,其中我们首先在散点图中绘制两个响应变量,然后连接对应于相邻时间点的点。我们可以使用平滑线来表示较大数据集中的趋势。 ?
可以通过在 sns.lmplot() 中设置 col=groupingcolumn 参数来实现,如下: 4、抖动图 (Jittering with stripplot) 通常,多个数据点具有完全相同的...结果,多个点绘制会重叠并隐藏。为避免这种情况,请将数据点稍微抖动,以便您可以直观地看到它们。使用 seaborn 的 stripplot() 很方便实现这个功能。...如果DataFrame具有MultiIndex,则此方法可以删除一个或多个级别。 6、边缘直方图 (Marginal Histogram) 边缘直方图具有沿 X 和 Y 轴变量的直方图。...但是,您需要注意解释可能会扭曲该组中包含的点数的框的大小。因此,手动提供每个框中的观察数量可以帮助克服这个缺点。 例如,左边的前两个框具有相同大小的框,即使它们的值分别是5和47。...40、多个时间序列 (Multiple Time Series) 您可以绘制多个时间序列,在同一图表上测量相同的值,如下所示。
但是,如果您经常使用Python,那么实现图形语法将非常具有挑战性,因为在流行的绘图库(如matplotlib或seaborn)中缺少标准化语法。...第三,您必须定义要使用哪种类型的几何对象(简称geom)。这可以是从条形图到散点图或任何其他现有绘图类型的任何内容。 前三个部分是强制性的。没有数据,就没有什么可以绘制的。...如果您曾经使用过ggplot2,那么您应该熟悉语法中的“+”,它表示上面描述的相同的思想。...接下来,我们定义变量“class”将显示在x轴上。最后,我们说我们要使用一个条形图,其中的条形图大小为20,以可视化我们的数据。...使用上面的代码块,我们的绘图如下所示: ? 绘制多维数据 除了基本的绘图之外,您几乎可以在ggplot2中做任何其他可以做的事情,比如绘制多维数据。
heatmap R语言之可视化①②热图绘制2 R语言之可视化①③散点图+拟合曲线 R语言之可视化①④一页多图(1) R语言之可视化①⑤ROC曲线 R语言之可视化①⑥一页多图(2) R语言之可视化①⑦调色板...R语言之可视化①⑧子图组合patchwork包 R语言之可视化①⑨之ggplot2中的图例修改 R语言之可视化(20)之geom_label()和geom_text() R语言之可视化(21)令人眼前一亮的颜色包...R语言之可视化(22)绘制堆积条形图 R语言之可视化(23)高亮某一元素 R语言之可视化(24)生成带P值得箱线图 R语言之可视化(25)绘制相关图(ggcorr包) R语言之可视化(26)ggplot2...绘制饼图 R语言之可视化(27)通过R语言制作BBC风格的精美图片 R语言之可视化(28)蜜蜂图 R语言之可视化(29)如何更改ggplot2中堆积条形图中的堆积顺序 问题:如何控制由ggplot2创建的堆积条的堆积顺序...如果我们想颠倒堆叠顺序但同时保留图例的顺序,则使用参数* position_stack(reverse = TRUE)* p <- ggplot(ra.melt, aes(x = variable, y
在R语言的ggplot2包中,读者可以借助于geom_bar函数轻松地绘制条形图。对于条形图大家对其的印象是什么呢?又见过哪些种类的条形图呢?在本篇文章我将带着各位网友说道说道有关条形图的哪些品种。...ggplot2的语法讲解 ---- 如果读者对R语言比较熟悉,一定听过或使用过ggplot2的绘图体系了。...:用于设置条形图的其他属性信息,如统一的边框色、填充色、透明度等; width:用于设置条形图的宽度,默认为0.9的比例; binwidth:该参数在条形图中已不再使用,但可以使用在绘制直方图的geom_histogram...单离散单数值变量的条形图 # 加载第三方包 library(ggplot2) library(gridExtra) # 已汇总数据--单离散变量条形图的绘制 df 变量有两个,离散型变量有一个的数据该如何绘制条形图呢(如常见的环比、同比问题),这里提供一个解决思路,那就是使用对比条形图。
由ggplot2绘制出来的ggplot图可以作为一个变量,然后由print()显示出来。 本文将使用R语言gcookbook包内数据集pg_mean。...> library(gcookbook) > library(ggplot2) (1)条形图 使用ggplot函数和geom_bar(stat="identity")绘制条形图 > pg_mean...如果不指定position="dodge",则默认绘制堆积条形图 > ggplot(cabbage_exp,aes(x=Date,y=Weight,fill=Cultivar))+ geom_bar(stat...= "identity") 绘制堆积条形图,如下图3-20所示。...(4)地图 使用maps包绘制的地图与其他ggplot2图形的结合变得十分方便。
当您有代表下列内容的类别时,可以使用簇状柱形图类型: 数值范围(例如,直方图中的项目计数)。 特定的等级排列(例如,具有"非常同意"、"同意"、"中立"、"不同意"和"非常不同意"等喜欢程度)。...三维百分比堆积柱形图以三维格式显示垂直百分比堆积矩形,而不以三维格式显示数据。当有三个或更多数据系列并且希望强调所占总数值的大小时,尤其是总数值对每个类别都相同时,您可以使用百分比堆积柱形图。...三维柱形图 三维柱形图使用可修改的三个轴(水平轴、垂直轴和深度轴),可对沿水平轴和深度轴分布的数据点(数据点:在图表中绘制的单个值,这些值由条形、柱形、折线、饼图或圆环图的扇面、圆点和其他被称为数据标记的图形表示...相同颜色的数据标记组成一个数据系列。)进行比较。当要对均匀分布在各类别和各系列的数据进行比较时,可以使用三维柱形图。...,且是一个分类变量,得到的结果是颜色会根据分类不同使用不同颜色. position = "dodge"将同类条形图并排放着,(dodge英文意思是闪躲回避的意思,这样记它的作用会比较快) 我们想改一下颜色怎么办
5.8.2 ggplot2的原理 如果要使用ggplot2绘制数据,则数据必须是数据框。 使用aes映射函数来指定数据框中的变量如何映射到图上的要素 使用geoms来指定数据在图表中的表示方式,例如。...散点图,条形图,箱形图等。 5.8.3 使用aes映射功能 该aes函数指定数据框中的变量如何映射到绘图上的要素。...任务3:使用更新的counts数据框绘制条形图,其中Cell_ID为x变量,Counts为y变量。提示:您可能会发现阅读很有帮助?geom_bar。...任务4:使用更新的counts数据框绘制散点图,其中Gene_ids为x变量,Counts为y变量 5.8.6 绘制热图 可视化基因表达数据的常用方法是使用热图。...如果我们仔细观察树,我们可以看到它们最终具有与细胞和基因相同数量的分支。换句话说,细胞聚类的总数与细胞总数相同,并且基因聚类的总数与基因的总数相同。
一、前言二、初阶图形2.1 基本条形图2.2 水平柱状图2.3 带图例的堆叠柱状图2.4 带图例的分组柱状图2.5 ggplot作图2.6 plotly作图三、进阶图形3.1 水平柱状图3.2 显著性柱状图...3.3 堆积百分比柱状图3.4 分组柱状图四、讨论一、前言柱状图又称条形图,在统计分析中的使用频率最高,也是众多小白入门R最早绘制的可视化图形。...") library("ggplot2") #构建数据框group 堆积百分比柱状图和刚刚的初阶类似...有交互性的可视化R包,可以绘制点图、线图、条形图、气泡图、桑基图、甘特图、树状图等。
数据可视化是数据分析过程中探索性分析的一部分内容,可以直观展示数据集数据所具有的的特征和关联关系等。...绘图系统 ggplot2初识 更多下期详解 引言 不同类型变量常用的图表 连续数值变量 一个数值变量可以用:柱状图,点图,箱图 两个数值变量可以用:散点图 分类变量 一个分类变量的可视化:频率表,条形图...两个分类变量的可视化:关联表,相对频率表,分段条形图 一个分类变量一个数值变量: 分类箱图、条形图 1 Lattice绘图系统 特点:一次成图;适用于关系变量间的交互:在变量z的不同水平,变量y如何随变量...一种方法是使用cut()函数,另外可以使用lattice包中的函数将连续型变量转化为瓦块(shingle)数据结构,这样,连续型变量可以被分割为一系列(可能)重叠的数值范围。...2 ggplot2绘图系统 ggplot2将数据、数据到图形要素的映射以及图形要素绘制分离,然后按图层叠加的方式作图,通过+进行叠加。
第二章 创建单变量图表 主要包括:表格、条形图、饼图、直方图、线图、堆积条形图、箱线图 1、表格可以为用户提供详细的数据信息。其中仪表盘可以将表格和图表融为一体。...2、条形图:水平方向称为“条形图”,垂直方向称为“柱状图”。条形图长度代表一个特定度量的量,适用于分类信息。 3、饼图:很具有争议。...注意从12点钟方向向右画最大的分块,然后在左边画第二大的分块,最小分块应接近于底部。这样帮助用户看到更大的块,也更容易比较。不要使用三维饼图,只会变得更糟糕。...6、堆积条形图:相同字段的不同分类画在了彼此的最顶端。最大的问题在于除了堆积条形图最低端的条形,其他条形的长度很难度量。若必须使用,数量限制在2-3个,以避免堆积失调。 7、箱线图:即盒须图。...相同值的数据点并列标出在同一数据线位置上,不同值的数据点标在不同数据线位置上。至此一批数据的箱形图便绘出了。统计软件绘制的箱形图一般没有标出内限和外限。
抖动图(Jittering with stripplot) 通常,多个数据点具有完全相同的 X 和 Y 值。结果,多个点绘制会重叠并隐藏。...因此,点的大小越大,其周围的点的集中度越高。 ? 6. 边缘直方图(Marginal Histogram) 边缘直方图具有沿 X 和 Y 轴变量的直方图。...因此,手动提供每个框中的观察数量可以帮助克服这个缺点。 例如,左边的前两个框具有相同大小的框,即使它们的值分别是 5 和 47。因此,写入该组中的观察数量是必要的。 ? 27....条形图(Bar Chart) 条形图是基于计数或任何给定指标可视化项目的经典方式。在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。 ?...多个时间序列(Multiple Time Series) 您可以绘制多个时间序列,在同一图表上测量相同的值,如下所示。 ? 41.
抖动图(Jittering with stripplot) 通常,多个数据点具有完全相同的 X 和 Y 值。结果,多个点绘制会重叠并隐藏。...因此,点的大小越大,其周围的点的集中度越高。 6. 边缘直方图(Marginal Histogram) 边缘直方图具有沿 X 和 Y 轴变量的直方图。...因此,手动提供每个框中的观察数量可以帮助克服这个缺点。 例如,左边的前两个框具有相同大小的框,即使它们的值分别是 5 和 47。因此,写入该组中的观察数量是必要的。 27....条形图(Bar Chart) 条形图是基于计数或任何给定指标可视化项目的经典方式。在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。...多个时间序列(Multiple Time Series) 您可以绘制多个时间序列,在同一图表上测量相同的值,如下所示。 41.
领取专属 10元无门槛券
手把手带您无忧上云