首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用ngx-smart- modal,如何在显示时仅评估模态内容

ngx-smart-modal 是一个基于 Angular 的模态框组件,用于创建和管理模态框。在显示模态内容时,可以通过以下步骤进行评估:

  1. 在 Angular 项目中安装 ngx-smart-modal 组件:
  2. 在 Angular 项目中安装 ngx-smart-modal 组件:
  3. 导入 ngx-smart-modal 模块到 Angular 组件中:
  4. 导入 ngx-smart-modal 模块到 Angular 组件中:
  5. 在组件中创建并配置模态框:
  6. 在组件中创建并配置模态框:
  7. 在 HTML 模板中使用模态框:
  8. 在 HTML 模板中使用模态框:

在显示模态框时,ngx-smart-modal 会自动评估模态框内容并显示。

根据问题描述,无法提供与腾讯云相关的产品和链接。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 2024 最新综述 | 当知识图谱遇上多模态学习

    在该综述中,作者重点分析了近三年(2020-2023)超过300篇文章,聚焦于两个主要方向:一是知识图谱驱动的多模态学习(KG4MM),探讨知识图谱如何支持多模态任务;二是多模态知识图谱(MM4KG),研究如何将知识图谱扩展到多模态知识图谱领域。作者从定义KGs和MMKGs的基本概念入手,继而探讨它们的构建和演化,涵盖知识图谱感知的多模态学习任务(如图像分类、视觉问答)及固有的MMKG构建内部任务(如多模态知识图谱补全、实体对齐)。本文还强调了研究重点,提供了任务定义、评估基准,并概述了基本见解。通过讨论当前面临的挑战和评估新兴研究趋势,如大型语言模型和多模态预训练策略的进展,本调研旨在为KG与多模态学习领域的研究人员提供一个全面的参考框架,以及对该领域不断演进的洞察,从而支持未来的工作。

    02

    2024 最新综述 | 当知识图谱遇上多模态学习

    在该综述中,作者重点分析了近三年(2020-2023)超过300篇文章,聚焦于两个主要方向:一是知识图谱驱动的多模态学习(KG4MM),探讨知识图谱如何支持多模态任务;二是多模态知识图谱(MM4KG),研究如何将知识图谱扩展到多模态知识图谱领域。作者从定义KGs和MMKGs的基本概念入手,继而探讨它们的构建和演化,涵盖知识图谱感知的多模态学习任务(如图像分类、视觉问答)及固有的MMKG构建内部任务(如多模态知识图谱补全、实体对齐)。本文还强调了研究重点,提供了任务定义、评估基准,并概述了基本见解。通过讨论当前面临的挑战和评估新兴研究趋势,如大型语言模型和多模态预训练策略的进展,本调研旨在为KG与多模态学习领域的研究人员提供一个全面的参考框架,以及对该领域不断演进的洞察,从而支持未来的工作。

    01

    国内多所高校共建开源社区LAMM,加入多模态语言模型大家庭的时候到了

    ChatGPT问世以来,大语言模型(LLM)实现了跳跃式发展,基于自然语言进行人机交互的AI范式得到广泛运用。然而,人类与世界的交互中不仅有文本,其他诸如图片、深度等模态也同样重要。然而,目前的多模态大语言模型(MLLM)研究大多数闭源,对高校和大多数研究机构的同学们并不友好。而且,大语言模型受限于训练知识,往往缺乏时事认知、复杂推理能力,这就如同只能快速问答,没有“深度思考”能力。AI Agent(人工智能代理)则是解决这一问题的关键,它赋予LLM深度思考、复杂决策的能力,使LLM向自主性、反应性、积极性和社交能力特征的智能实体发展。我们相信,AI Agent领域将会诞生更多改变生活工作方式的成果,是大语言模型及多模态大模型的重要进化方向。

    01

    [ASP.NET MVC] 利用动态注入HTML的方式来设计复杂页面

    随着最终用户对用户体验需求的不断提高,实际上我们很多情况下已经在按照桌面应用的标准来设计Web应用,甚至很多Web页面本身就体现为一个单一的页面。对于这种复杂的页面,我们在设计的时候不可以真的将所有涉及的元素通通至于某个单独的View中,将复杂页面相对独立的内容“分而治之”才是设计之道。我们可以借鉴Smart Clent应用的设计方式:将一个Windows Form作为应用的容器(Smart Client Shell),在操作过程中动态地激活相应的用户控件(Smart Part)并加载到容器中。对于一个复杂页面来说,我们也只需要将其设计成一个容器,至于运行过程中动态显示的内容则可以通过Ajax调用获取相应的HTML来填充。[源代码从这里下载]

    02

    港大 & 腾讯 & 上交大 Plot2Code | 首个全面基准测试,深入评估多模态大型语言模型在视觉编码挑战中的表现!

    在大数据和计算能力显著进步的背景下,大型语言模型(LLM),例如ChatGPT [27]和GPT-4 [28],在商业和学术领域都成为了关注的焦点。为了在各种情境中扩展它们的灵活性,多模态大型语言模型(MLLM)[8; 23; 29]迅速发展,最新的模型如GPT-4V [29],Gemini [9],Claude-3 [1],以及开源模型LLaVA [21; 22],Mini-GPT [44; 5]等等[8; 7]。同时,各种各样的评估基准[17; 16; 41; 39]被策划出来,以评估它们在不同领域内的视觉理解性能。然而,对于文本密集图像中的图表的关注仍然存在明显的不足,这对于评估MLLM的多模态推理能力至关重要[24; 25]。

    01

    多才多艺模型出现 | 捕捉每一个细节,多任务 + 多模态 + 自监督等Trick都不在话下!

    面部表情识别(FER)是日常人类社交互动以及人机互动中成功进行的基本任务[1]。根植于人类感知的情境敏感和自上而下的方式,作者如何感知一个表情会随着(情感)情境和先验知识的变化而变化[7, 18, 53],以及其他各种因素[58]。相同的面部表情根据情境和上下文的不同可能会被感知为不同的含义[5, 16, 47]。Maier等人[39]最近的一项综述强调,为了开发与人类感知相一致的FER系统,作者应该考虑社会知识以及情境线索。从人类的角度来看,情境本质上是多模态的,不仅仅是视觉上可感知的,如同之前在计算机视觉中常处理的那样[31, 33, 59]。

    01

    TPAMI 2022|3D语义分割中域适应的跨模态学习

    域适应是在标签稀缺时实现学习的一项重要任务。虽然大多数工作只关注图像模态,但存在许多重要的多模态数据集。为了利用多模态进行域适应,我们提出了跨模态学习,我们通过相互模仿来加强两种模态的预测之间的一致性。我们限定网络对标记的数据做出正确的预测,并对未标记的目标域数据进行跨模态的一致性预测。无监督和半监督的域适应 settings 的实验证明了这种新颖的域适应策略的有效性。具体来说,我们评估来自 2D 图像、3D 点云或两者都有的 3D 语义分割任务。我们利用最近的自动驾驶数据集来产生各种各样的域适应场景,包括场景布局上、光照上、传感器设置上、天气上的变化,以及 synthetic-to-real 的设置。在所有域适应场景中,我们的方法显著地改进了以前的单模态域适应的 baseline 。

    01
    领券