首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用np.select选择两个pandas列

是指在pandas中使用np.select函数根据条件从两个列中选择值。np.select函数可以根据条件从多个选择列表中选择对应的值,并返回一个新的列。

np.select函数的语法如下: np.select(conditions, choices, default)

其中,conditions是一个包含多个条件的列表,choices是一个包含多个选择列表的列表,default是一个默认值。np.select函数会根据条件逐个判断,如果条件为True,则选择对应的选择列表中的值,如果条件都为False,则选择默认值。

使用np.select选择两个pandas列的步骤如下:

  1. 导入numpy和pandas库:import numpy as np, import pandas as pd
  2. 创建一个pandas DataFrame:df = pd.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]})
  3. 定义条件列表:conditions = [df['col1'] > df['col2'], df['col1'] < df['col2']]
  4. 定义选择列表:choices = ['col1大于col2', 'col1小于col2']
  5. 使用np.select函数选择两个列:df['选择结果'] = np.select(conditions, choices, default='col1等于col2')

这样,就可以在DataFrame中添加一个新的列,该列根据条件选择两个列的值。

使用np.select选择两个pandas列的应用场景:

  • 数据清洗:根据不同的条件对数据进行分类或标记。
  • 数据转换:根据条件将数据转换为不同的值或类型。
  • 数据分析:根据条件对数据进行分组或聚合。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云云服务器(CVM):https://cloud.tencent.com/product/cvm
  • 腾讯云云数据库MySQL版(TencentDB for MySQL):https://cloud.tencent.com/product/cdb_mysql
  • 腾讯云云原生容器服务(Tencent Kubernetes Engine,TKE):https://cloud.tencent.com/product/tke
  • 腾讯云人工智能(AI):https://cloud.tencent.com/product/ai
  • 腾讯云物联网(IoT):https://cloud.tencent.com/product/iotexplorer
  • 腾讯云移动开发(移动推送、移动分析、移动测试等):https://cloud.tencent.com/product/mobile
  • 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos
  • 腾讯云区块链(BCS):https://cloud.tencent.com/product/bcs
  • 腾讯云元宇宙(Tencent Cloud Metaverse):https://cloud.tencent.com/solution/metaverse
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

1000+倍!超强Python『向量化』数据处理提速攻略

这是一个非常基本的条件逻辑,我们需要为lead status创建一个新。 我们使用Pandas的优化循环函数apply(),但它对我们来说太慢了。...看下面的例子: numpy.where()它从我们的条件中创建一个布尔数组,并在条件为真或假时返回两个参数,它对每个元素都这样做。这对于在Dataframe中创建新非常有用。...np.select将按从前到后的顺序对每个数组求值,当数据集中的某个给定元素的第一个数组为True时,将返回相应的选择。所以操作的顺序很重要!像np.where。...以天为单位的两个日期之差除以7得到过去的周数。下面是使用.apply()的方法。 有两种向量化方法。第一种方法是使用pandas .dt series datetime访问器。...为了解决这个问题,我们对Pandas中的一个series使用.shift()将前一行移到相同的级别。一旦它们被转移到相同的级别,我就可以使用np.select()执行相同的条件向量化方法了!

6.7K41
  • 如何将数据处理速度提升1000+倍

    以下文章来源于气象杂货铺 ,作者bugsuse 利用Python进行数据处理时经常使用的是pandas和numpy,这两个工具的功能都很强大,尤其是pandas,更是Python中数据处理方面最强大的工具之一...parse_dates=['Date Created', 'Original Record: Date Created']) 注:parse_dates 参数可将给定的进行解析为日期格式...对多个条件选择或嵌套条件而言,np.select的实现方法更简单甚至速度更快。...nested .apply() 使用np.select时,直接获取原始数据可以进一步加速: %%timeit # With np.select conditions = [ ((df['Inactive...pandas.shift函数,将之前的值向下移动,这样就可以对比相同轴上的值 使用np.select向量化条件逻辑检查 %%timeit previous_id = df['Internal ID'].

    3.1K30

    pandas 的方法不够简洁方便,那你一定是没有使用它的增强库

    他提供了许多实用功能,结合 pandas 使用能够大大提升我们的代码效率,那么我就针对这个库做一个系列教程。 不过,我不喜欢只是到官网抄一下例子,把英文翻译成中文,草草了事。...结合 numpy 我们也能轻易做到 ---- numpy 也有 case when 如果你学过我的 pandas 专栏,那么就一定会 numpy 的两个条件函数,这里我们只需要用 select 就可以轻易做到多条件分支...关于 np.select 详细讲解,可以查看专栏文章 那么,我们该如何自己写一个类似 janitor 的函数,方便以后重复使用?...所以,conditions 是一个元组 col_name:新的名字 现在再来看 np.select 是需要把所有的条件给放一起,但现在 conditions 是每隔一个位置才是分支条件,利用 python...的切片功能就可以轻易分开: 行2,3:利用切片的最后一个参数 step ,让其每隔2个位置取出元素,配合开始位置,就可以取出所有的奇数位置或偶数位置的元素 最后,我们不希望修改了源数据,可以使用 pandas

    57220

    五大方法添加条件-python类比excel中的lookup

    方法五:数据分箱pd.cut()——最类似于excel中的lookup 构造测试数据 import numpy as np import pandas as pd import random # 随机生成...40,100) for i in range(60)]).reshape(20,3),columns=["语文","数学","英语"]) df['总成绩'] = df.sum(axis=1) df 添加一条件...: >=240 这是一个excel学习中很经典的案例,先构造评级参数表,然后直接用lookup匹配就可以了,具体不在这讲了,今天讲一下用python怎么实现该功能,总共五种(三大类:映射+numpy+pandas...这个函数依次接受三个参数:条件;如果条件为真,分配给新的值;如果条件为假,分配给新的值 # np.where(condition, value if condition is true, value...# 方法四 np.select # np.select()的函数,给它提供两个参数:一个条件,另一个对应的等级列表。

    1.9K20

    Pandas与SQL的数据操作语句对照

    内容 选择行 结合表 条件过滤 根据值进行排序 聚合函数 选择行 SELECT * FROM 如果你想要选择整个表,只需调用表的名称: # SQL SELECT * FROM table_df...# Pandas table_df SELECT a, b FROM 如果你想从一个表中选择特定的,列出你想要的在双括号中: # SQL SELECT column_a, column_b...() SELECT a as b 如果你想重命名一个使用.rename(): # SQL SELECT column_a as Apple, column_b as Banana FROM table_df...'}) SELECT CASE WHEN 对于等价于SELECT CASE WHEN的情况,您可以使用np.select(),其中首先指定您的选择和每个选择的值。...table_df[table_df['column_a'] == 1] SELECT column_a WHERE column_b 当你想从一个表中选择一个特定的并用另一个过滤它时,遵循以下格式

    3.1K20

    Excel与pandas使用applymap()创建复杂的计算

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算,并讲解了一些简单的示例。...通过将表达式赋值给一个新(例如df['new column']=expression),可以在大多数情况下轻松创建计算。然而,有时我们需要创建相当复杂的计算,这就是本文要讲解的内容。...那么,在中对每个学生进行循环?不!记住,我们永远不应该循环遍历pandas数据框架/系列,因为如果我们有一个大的数据集,这样做效率很低。...pandas applymap()方法 pandas提供了一种将自定义函数应用于或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三中的每一上分别使用map(),而applymap()能够覆盖整个数据框架(多)。

    3.9K10

    Pandas库的基础使用系列---获取行和

    前言我们上篇文章简单的介绍了如何获取行和的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...我们试试看如何将最后一也包含进来。info = df.iloc[:, [1, 4, -1]]可以看到也获取到了,但是值得注意的是,如果我们使用了-1,那么就不能用loc而是要用iloc。...同样我们可以利用切片方法获取类似前4这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一也计算在内了。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多。为了更好的的演示,咱们这次指定索引df = pd.read_excel("..

    60800

    这次pandas真的要与sql干上了,你有的我得都有,遥遥领先就对了

    前言 sql 中的 过滤、分组、聚合、排序、表连接,在 pandas 中全都有对应方法。 sql 高高手会说,case when 你没有了吧。...以前pandas确实没有直接的 case when 方法,不过现在还真有!没错,这是 pandas 2.2 版本新增的功能。...而且名字也是一绝,就叫 ”case_when“ 其实 pandas 的一众大佬们也开了会,讨论了一段时间 大致的意思是,许多人都在问,pandas 中如何根据条件创建。...不明原因,没有智能提示 很类似前面的 np.select ,只不过把结构弄成一个元组列表,每个元组对应 (条件,值)。而默认值就要在一开始定义到里面。...现在我们通过自定义函数,改造 np.select 吧。 第一种是直接一个函数搞定: 函数第一个参数是默认值,之后的是一对对出现的条件和对应值。

    13500

    使用Pandas实现1-6分别和第0比大小得较小值

    一、前言 前几天在Python白银交流群【星辰】问了一个pandas处理Excel数据的问题,提问截图如下: 下图是他的原始代码截图: 二、实现过程 其实他这个代码,已经算实现了,如果分别进行定义的话...,每一做一个变量接收,也是可以实现效果的,速度上虽然慢一些,但是确实可行。...,如下所示: df['min'] = df[['标准数据', '测试1']].min(axis=1) print(df['min']) 后来【dcpeng】还给了一个代码,如下所示: import pandas...for i in range(1, 4): df[f'min{i}'] = df[['标准数据', f'测试{i}']].min(axis=1) print(df) 看上去确实是实现了多比较的效果...当然这里取巧了,使用了字符串格式化。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    1.2K20

    如何使用pandas读取txt文件中指定的(有无标题)

    我的需求是取出指定的的数据,踩了些坑给研究出来了。...补充知识:关于python中pandas读取txt文件注意事项 语法:pandas.read_table() 参数: filepath_or_buffer 文件路径或者输入对象 sep 分隔符,默认为制表符...names 读取哪些以及读取的顺序,默认按顺序读取所有 engine 文件路径包含中文的时候,需要设置engine = ‘python’ encoding 文件编码,默认使用计算机操作系统的文字编码...na_values 指定空值,例如可指定null,NULL,NA,None等为空值 常见错误:设置不全 import pandas data = pandas.read_table(‘D/anaconda...以上这篇如何使用pandas读取txt文件中指定的(有无标题)就是小编分享给大家的全部内容了,希望能给大家一个参考。

    10.1K50

    Python数据分析实战之技巧总结

    —— Pandas的DataFrame如何固定字段排序 —— 保证字段唯一性应如何处理 —— 透视表pivot_table函数转化长表注意问题 ——Pandas的DataFrame数据框存在缺失值NaN...Q4、数据运算存在NaN如何应对 需求:pandas处理多相减,实际某些元素本身为空值,如何碰到一个单元格元素为空就忽略了不计算,一般怎么解决!...按照原序 df5_7=df5[df5.电耗量 > 80]# 选择df5.电耗量中>80的行 # df5[df5.建筑名称.isin(['B', 'C'])] #DataFrame 条件查找 #...库中使用.where()函数 # df5_13=df5.where((df5.月份=="1月")&(df5.动力用电>5)).dropna(axis=0) # 或pandas库中的query()函数 df...np.select()的函数,给它提供两个参数:一个条件,另一个对应的等级列表。

    2.4K10

    使用Pandas完成data数据处理,按照数据中元素出现的先后顺序进行分组排列

    一、前言 前几天在Python钻石交流群【瑜亮老师】给大家出了一道Pandas数据处理题目,使用Pandas完成下面的数据操作:把data中的元素,按照它们出现的先后顺序进行分组排列,结果如new中展示...import pandas as pd df = pd.DataFrame({ 'data': ['A1', 'D3', 'B2', 'C4', 'A1', 'A2', 'B2', 'B3',...new列为data分组排序后的结果 print(df) 结果如下图所示: 二、实现过程 方法一 这里【猫药师Kelly】给出了一个解答,代码和结果如下图所示。...for k, v in Counter(df['data']).items()))] print(df) 运行之后,结果如下图所示: 方法四 这里【月神】给出了三个方法,下面展示的这个方法和上面两个方法的思路是一样的...这篇文章主要盘点了使用Pandas完成data数据处理,按照数据中元素出现的先后顺序进行分组排列的问题,文中针对该问题给出了具体的解析和代码演示,一共6个方法,欢迎一起学习交流,我相信还有其他方法,

    2.3K10

    python中pandas库中DataFrame对行和的操作使用方法示例

    pandas中的DataFrame时选取行或: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...'w'使用类字典属性,返回的是Series类型 data.w #选择表格中的'w'使用点属性,返回的是Series类型 data[['w']] #选择表格中的'w',返回的是DataFrame...下面是简单的例子使用验证: import pandas as pd from pandas import Series, DataFrame import numpy as np data = DataFrame...[0,2]] #选择第2-4行第1、3的值 Out[17]: a c two 5 7 three 10 12 data.ix[1:2,2:4] #选择第2-3行,3-5(不包括5)的值 Out...github地址 到此这篇关于python中pandas库中DataFrame对行和的操作使用方法示例的文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    盘点使用Pandas解决问题:对比两数据取最大值的5个方法

    一、前言 前几天在Python星耀交流群有个叫【iLost】的粉丝问了一个关于使用pandas解决两数据对比的问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2数据,想每行取两数据中的最大值,形成一个新,该怎么写?最开始【iLost】自己使用了循环的方法写出了代码,当然是可行的,但是写的就比较难受了。...方法一:【月神】解答 其实这个题目的逻辑和思路也相对简单,但是对于Pandas不熟悉的小伙伴,接受起来就有点难了。...使用numpy结合pandas,代码如下: df['max4'] = np.where(df['cell1'] > df['cell2'],df['cell1'], df['cell2']) df...这篇文章基于粉丝提问,针对df中,想在每行取两数据中的最大值,作为新的一问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。

    4.1K30

    两个使用 Pandas 读取异常数据结构 Excel 的方法,拿走不谢!

    通常情况下,我们使用 Pandas 来读取 Excel 数据,可以很方便的把数据转化为 DataFrame 类型。...但是现实情况往往很骨干,当我们遇到结构不是特别良好的 Excel 的时候,常规的 Pandas 读取操作就不怎么好用了,今天我们就来看两个读取非常规结构 Excel 数据的例子 本文使用的测试 Excel...A 就有数据的,此时我们需要参数 usecols 来进行规避处理 比如上面的 Excel 数据,如果我们直接使用 read_excel(src_file) 读取,会得到如下结果 我们得到了很多未命名的以及很多我们根本不需要的数据...2 行 我们也可以将定义为数字列表 df = pd.read_excel(src_file, header=1, usecols=[1,2,3,4,5]) 也可以通过列名称来选择所需的数据 df...openpyxl 来解析 Excel 文件并将数据转换为 pandas DataFrame 以下是使用 openpyxl(安装后)读取 Excel 文件的方法: from openpyxl import

    1.3K20
    领券