首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

机器学习中的线性代数:关于常用操作的新手指南

向量乘法 向量乘法有两种:点积(Dot product) 和 Hadamard乘积(Hadamard product)。 点积 两个向量的点积是一个标量。...y = np.array([1,2,3]) x = np.array([2,3,4]) np.dot(y,x) = 20 Hadamard乘积 Hadamard 乘积是元素相乘,它的输出是一个向量。...矩阵的 Hadamard 乘积 Matrix Hadamard product 矩阵的Hadamard 乘积是一个元素运算,就像向量一样。对应位置的值相乘产生新的矩阵。...python 的乘法运算 a * b [[ 6, 12], [10, 18]] 在 numpy 中,只要矩阵和向量的维度满足 broadcasting的要求,你便可以对他们使用 Hadamard...用这些例子自我测试下 使用 numpy 做矩阵乘法 Numpy 使用函数 np.dot(A,B) 做向量和矩阵的乘法运算。

1.5K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度学习中的基础线代知识-初学者指南

    向量乘法 向量乘法有两种类型:点积和 Hadamard乘积 。 点积 两个向量的点积是一个标量。 向量和矩阵的点积(矩阵乘法)是深度学习中最重要的操作之一。...y = np.array([1,2,3]) x = np.array([2,3,4]) np.dot(y,x) = 20 Hadamard乘积 Hadamard乘积 是元乘法,它的输出是一个向量。...了解二维上的操作是个很好的开始。 矩阵Hadamard乘积 矩阵的 Hadamard 乘积是一个元素运算,就像向量一样。 相应位置的值通过乘法运算来产生一个新的矩阵。...broadcasting 要求,就可以用Numpy对矩阵和向量进行 Hadamard 乘积运算。...  M × N 矩阵和 N × K 矩阵的乘积是 M × K 矩阵。 新矩阵取第一个矩阵的行和第二个矩阵的列。 步骤 矩阵乘法依赖于点积与行列元素的各种组合。

    1.5K60

    从模型源码梳理TensorFlow的乘法相关概念

    (一般矩阵乘积) 1.2 Hadamard product(哈达玛积) 1.3 tf.matmul 1.4 tf.multiply 1.5 重载 1.6 DIN使用 0x02 多维矩阵相乘 2.1 TensorFlow...本文涉及概念有:矩阵乘积,多维矩阵相乘,tile,张量广播等。 0x01 矩阵乘积 这里只介绍一般矩阵乘积和哈达玛积,因为DIN和DIEN有使用到。...1.1 matmul product(一般矩阵乘积) m x p矩阵A与p x n矩阵B,那么称 m x n 矩阵C为矩阵A与矩阵B的一般乘积,记作C = AB ,其中矩阵C元素[cij]为矩阵A、B对应两两元素乘积之和...1.4 tf.multiply 此函数是:两个矩阵中对应元素各自相乘,即逐元素操作。逐元素操作是指把x中的每一个元素与y中的每一个元素逐个地进行运算。就是哈达玛积。...向量乘法采用的乘法是线性代数中的矩阵之间相乘的运算。 1.6 DIN使用 在DIN使用如下: # 7.

    1.7K20

    机器学习入门 3-7 Numpy 中的矩阵运算

    为了让列表中的每一个元素都乘以 2,我们可以使用 for 循环实现。...为了测试效率,我们将列表中的元素个数设置的大一些。 n = 1000000 L = [i for i in range(n)] 在 jupyter 中,可以使用 %%time 魔法方法来测试时间。...A = np.arange(4).reshape(2, 2) B = np.full((2, 2), 10) A + B # 矩阵的加法 A - B # 矩阵的减法 A * B # Hadamard乘积...,对应元素相乘 A / B # 矩阵对应元素相除 A.dot(B) # 矩阵的乘法 A.T # 矩阵的转置 image.png 向量和矩阵的运算 在机器学习中除了矩阵和矩阵的运算外,还有一种运算使用的也比较多...中,向量和矩阵可以进行 Hadamard 乘积(对应元素相乘),这个同样是运用广播机制,将向量扩充成矩阵,然后再与矩阵进行 Hadamard 乘积。

    78320

    numpy通用函数:快速的逐元素数组函数

    在这个过程中,NumPy通用函数(ufuncs)脱颖而出,成为加速逐元素数组操作的利器。 NumPy通用函数不仅仅是速度的象征,它们还提供了一种优雅而灵活的方式来处理元素级运算。...NumPy通用函数:快速的逐元素数组函数 NumPy是Python中重要的数值计算库,提供了强大的数组操作和广播功能。...它能够实现高效的逐元素计算,让我们能够轻松地对整个数组进行数学、逻辑和三角等操作,而无需使用显式的循环。 为什么要使用NumPy通用函数?...而使用NumPy通用函数,我们可以利用底层C语言优化的操作,避免了Python的循环开销,从而实现高效的逐元素计算。...总结: NumPy通用函数是NumPy库中强大的功能之一,它能够实现快速的逐元素数组操作,大大提高了数值计算的效率。

    35510

    《deep learning》学习笔记(2)——线性代数

    在numpy中,可以用以下方式生成各种维度的张量: >>> import numpy as np ## 生成元素全为0的二维张量,两个维度分别为3,4 >>> np.zeros((3,4)) array...(Element-wise Operation):针对形状相同张量的运算统称,包括元素对应乘积、相加等,即对两个张量相同位置的元素进行加减乘除等运算。...元素对应乘积(element-wise product)或者Hadamard 乘积(Hadamard product),记为 A ⊙ B: >>> A = np.arange(6).reshape(3,2...2.6 特殊类型的矩阵和向量 对角矩阵(diagonal matrix)只在主对角线上含有非零元素,其他位置都是零。 ? ?...2.11 行列式 行列式,记作 det(A),是一个将方阵 A 映射到实数的函数。行列式等于矩阵特征值的乘积。行列式的绝对值可以用来衡量矩阵参与矩阵乘法后空间扩大或者缩小了多少。

    52150

    卷积调制空间自注意力SpatialAtt,轻量高效,即插即用!

    当将哈达玛乘积替换为逐元素求和操作时,我们Conv2Former的四种变体的性能均有所下降。 1. 研究背景: 研究问题:如何更高效地利用卷积操作来编码空间特征,以提升视觉识别模型的性能。...卷积调制操作:与自注意力通过矩阵乘法生成注意力矩阵不同,卷积调制操作直接使用k×k深度可分离卷积来产生权重,并通过Hadamard乘积重新加权值表示。...不是通过查询和键之间的矩阵乘法生成注意力矩阵,而是直接使用k × k深度可分离卷积来产生权重,通过Hadamard乘积(⊙:Hadamard乘积;⊗:矩阵乘法)重新加权值。 图3....正如论文题目写的那样,卷积调制空间自注意力的实现原理非常简洁,它不是通过Q和K之间的矩阵乘法生成注意力矩阵,而是直接使用k × k深度可分离卷积来产生权重,通过Hadamard乘积(哈达玛积,也叫基本积...,即:两个矩阵同阶,对应元素相乘的结果矩阵)生成特征优化结果。

    16310

    机器学习中的基本数学知识

    机器学习中的基本数学知识 注:本文的代码是使用Python 3写的。...机器学习中的基本数学知识 线性代数(linear algebra) 第一公式 矩阵的操作 换位(transpose) 矩阵乘法 矩阵的各种乘积 内积 外积 元素积(element-wise product...注:由于在线性代数中,矩阵乘法 ,所以对于表达式 ,严格地说,要把矢量(向量)看做一列的矩阵(而不是一行的矩阵),才符合数学上的定义。...答案是: 我们可以看出矩阵相乘的约束:乘数1的列数要和乘数2的行数相等。 矩阵乘法不满足交换律 我们再看看交换乘数后,计算的结果: 比如:数 的含义是2斤苹果多少钱。...元素积(element-wise product/point-wise product/Hadamard product 计算公式 x = numpy.array([1, 3]) y = numpy.array

    3.9K70

    Python之numpy模块的添加及矩阵乘法的维数问题

    参考链接: Python程序添加两个矩阵 在Python中,numpy 模块是需要自己安装的,在安装编程软件时,默认安装了pip,因此我们可以用pip命令来安装  numpy模块。         ...,在图中可以看出 “Successfully installed numpy-1.14.5”,即成功的安装了版本为1.14.5的numpy模块。         ...接下来就可以使用numpy模块进行编程了。          这里来说一下使用矩阵乘法的问题:在numpy模块中矩阵的乘法用dot()函数,但是要注意维数,还有就是要细心。 ....shape)”放在“l1=nonlin(np.dot(l0,syn0))”的前一行,如下图所示:  发现矩阵l0和syn0的维数分别为(4,)与(9,1),若矩阵l0为(4,9),矩阵乘法才能计算。...这里的矩阵l0就是输入,即为x。  经过查找发现输入的第一行数据中,有一个数据错将小数点输成逗号所致。

    76910

    深度 | BP表达式与硬件架构:相似性构建更高效的计算单元

    为了表示这种结构,我们使用圆圈表示复合函数算子(Ring 算子),因此目标函数 L 可以写为: ? 根据链式法则,目标函数的导数可以根据矩阵乘法的形式写为: ?...这种寻找最优乘法序列的任务称为矩阵链式排序问题。在本案例中,因为向量左乘矩阵还是得到一个向量,所以我们只需要从左往右进行矩阵乘积就能进行高效的计算。 ?...其次我们需要考虑如何具体地计算这些矩阵运算而不使用构建雅可比矩阵。这是非常重要的,因为模型的特征数量 m 可能是几万的数量级,这意味着雅可比矩阵可能有数十亿的元素。...在本案例中,雅可比矩阵是一个对角矩阵,那么向量和雅可比矩阵的乘积就等价于向量对应元素间的乘积,因此我们就能避免构建一个 m-x-m 的雅可比矩阵。 ?...为了进一步简化,令 b 指代向量-雅可比乘积(即 backwards()、Left operator、grad_func),使用 Hadamard 乘积的符号表示元素对应乘积。

    1.1K70

    Python数据分析之NumPy(运算篇)

    Numpy的基本数学运算 逐元素运算 x = np.array([[1,2],[3,4]], dtype=np.float64) y = np.array([[5,6],[7,8]], dtype=np.float64...计算乘积的函数:dot,inner,outer dot : 对于两个一维的数组,计算的是这两个数组对应下标元素的乘积和(数学上称之为内积);对于二维数组,计算的是两个数组的矩阵乘积;对于多维数组,它的通用计算公式如下...,即结果数组中的每个元素都是:数组a的最后一维上的所有元素与数组b的倒数第二位上的所有元素的乘积和 inner : 和dot乘积一样,对于两个一维数组,计算的是这两个数组对应下标元素的乘积和;对于多维数组...outer乘积计算的列向量和行向量的矩阵乘积: a = np.arange(12).reshape(2,3,2) b = np.arange(12,24).reshape(2,2,3) c = np.dot...21]] 求向量内积 v = np.array([9,10]) w = np.array([11, 12]) print(v.dot(w)) print(np.dot(v, w)) 219 219 矩阵的乘法

    1.3K41

    学习笔记DL004:标量、向量、矩阵、张量,矩阵、向量相乘,单位矩阵、逆矩阵

    如果每个元素都属于R,向量有n个元素,向量属于实数集R的n次笛卡儿乘积构成集合,记ℝⁿ。明确表示向量元素,元素排列成一个方括号包围纵列。向量看作空间中点。每个元素是不同坐标轴上的坐标。...矩阵、向量相乘。 两个矩阵A、B矩阵乘积(matrix product)是第三个矩阵C。矩阵A列数必须和矩阵B行数相等。如果矩阵A的形状mn,矩阵B的形状是np,矩阵C的形状是mp。...两个或多个矩阵并列放置书写矩阵乘法。C=AB。Ci,j=Sumk(Ai,kBk,j)。列乘行。...两个矩阵对应元素乘积,元素对应乘积(element-wise product),Hadamard 乘积(Hadamard product),记A⊙B。...两个相同维数向量x、y点积(dot product),矩阵乘积x⫟y。矩阵乘积C=AB计算Ci,j步骤看作A第i行和B的第j列间点积。

    2.8K00

    小白也能看懂的BP反向传播算法之Surpass Backpropagation

    顺便说一下,这个表达式诱发了前面提到的wljk符号。如果我们使用j来指示输入神经元,k来指示输出神经元,那么我们就需要替换表达式中的权重矩阵 用权重矩阵的转置。...也可以将其想象成一种避免下标混乱,而且还能保持精确的方法。这个表达式在实际中非常有用,因为许多矩阵库都能提供快速的矩阵乘法,向量加法和向量化。 我们间接的计算 ?...Hadamard乘积s⊙t 后向传播算法是基于通用的线性代数运算——就像向量加法,矩阵乘向量等等。但是有一个操作平常很少用到。...特别的,假设s和t是相同维数的两个向量,那么我们使用s⊙t来表示两个向量元素级的乘法。 ? image.png 这种元素级的乘法有时叫做 Hadamard乘积或者Schur乘积。...我们将把它叫做Hadamard乘积。好的矩阵库一般都能提供Hadamard乘积的快速实施,因此在实施后向传播时候就非常方便。

    85720

    NumPy的广播机制

    a1与a2之间可以进行加减乘除,b1与b2可以进行逐元素的加减乘除以及点积运算,c1与c2之间可以进行逐元素的加减乘除以及矩阵相乘运算(矩阵相乘必须满足维度的对应关系),而a与b,或者b与c之间不能进行逐元素的加减乘除运算...广播(Boardcasting)是NumPy中用于在不同大小的阵列(包括标量与向量,标量与二维数组,向量与二维数组,二维数组与高维数组等)之间进行逐元素运算(例如,逐元素 加法,减法,乘法,赋值等)的一组规则...NumPy在广播的时候实际上并没有复制较小的数组; 相反,它使存储器和计算上有效地使用存储器中的现有结构,实际上实现了相同的结果。...的错误,说明dot,即点积(不是逐元素运算,对于两个向量,计算的是内积,对于两个数组,则尝试计算他们的矩阵乘积)并不能运用广播机制。...import numpy as npA = np.zeros((2,4))B = np.zeros((3,4))C = A*B报错如下: 在这里插入图片描述 这种是逐元素相乘,会运用广播机制,只不过,此时当前两个元素的维度不能广播

    2K40
    领券