python使用数组作为索引遍历数组 import numpy as np a=np.arange(0,5) print(a) # [0 1 2 3 4] b=np.arange(0,10).reshape...(5,2) print(b) # [[0 1] # [2 3] # [4 5] # [6 7] # [8 9]] # 将一维数组作为二维数组的索引 c0=b[a][:,0] print(c0)
今天的文章和大家谈一谈如何用JavaScript进行数组去重,这是一道常见的面试(笔试)题,可以很好地考察出一个人的逻辑思维及边界考虑情况,希望此文能够帮助大家在解决类似问题时拓宽思路。...当然,“使用库中的一个函数就能去重”并不在本篇文章的讨论范围内,我们针对的是需要自己写代码的场景。...考虑到实际情况,我们使用ES5(主要就用了indexOf方法,如果是更古老的环境,可以自己增加这段代码,或者使用ES5兼容库es5-sham.js)。...好了,回归正题,我们要进行数组去重,那么先想个大致的思路,比如: 1)新建一个空数组,老数组从第一个开始,看看新数组中有没有,如果没有就push进入新数组,如果存在就下一个。...当我们的环境是ES6时,一般的去重标准可以使用 set 来做: var rs = new Set(arr); 但是当数组元素为引用类型时,引用地址不一样但在我们看来是完全一样的两个元素,这个方法是去不掉的
map[string]struct{}{}创建了一个key类型为String值类型为空 struct的 map,等效于使用 make(map[string]struct{}) 空 struct不占内存空间...,使用它来实现我们的函数空间复杂度是最低的。...如果不想针对每种类型的切片都写一个去重函数的话可以使用Go的type-switch自己写一个可以处理多个切片类型的函数。...default: err := Errorf("Unknown type: %T", slice) return nil, err }} 函数接收一个空接口类型的参数,然后使用类型选择进入相应的分支进行处理...key的值是切片元素的字符串表现形式(类型的 String()方法的返回值) 函数返回值的类型是空接口,所以拿到返回值后要进行类型断言才能使用。
# 来源:NumPy Essentials ch3 向量化 import numpy as np # NumPy 数组的运算是向量化的 # 数组和标量运算是每个元素和标量运算 x = np.array...([-1, 4, 9, 0]) # 需要计算内积的时候 # 使用np.dot np.dot(x, y) # 12 # 所有逻辑运算符也是向量化的 x == y # array([False..., True, True, False], dtype=bool) # NumPy 使用 C 语言编译出来的代码来处理数据 # 所以很快 x = np.arange(10000) ''' %timeit...11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) ''' # 也可以使用..., 7, 0]) # 布尔数组可以使用 sum 方法来统计 True 的个数 # 原理是调用 sum 时会将 False 转换成 0 # True 转换成 1 x = np.random.random
在上一篇数据去重文中,介绍了使用hashtable这种数据结构实现对一组数据的去重操作,那么这种方式是否存在优化的空间?...先来看一道题,给定一组整数无序数组,获取重复的数据 如:[1,2,3,1] 在数据去重第一篇文章中,使用的hashtable, hashtable这种数据结构内部实现上也借用了数组,那么我们是否可以直接使用数组呢...首先要保证去重的数组是一组正整数,并且数组最大值<整数n 声明长度为n的bool型数组 遍历去重数组的值,判断该索引值是否为false, false则将该索引设置为true 代码: package main...,在使用数组去重时,需要注意以下几点: 去重的数据为整数 去重数据的最大值小于整数n 数据的离散性不能过于分散,如果像1, 100 ,1000 这样的范围分散,那么使用数组进行去重空间复杂度会有些高 如果数据量很大的情况下...基于以上的数组去重算法思想,在下篇文章中,将介绍大数据的去重算法。
对数组进行去重就是这样一种常见的数据操作需求:我们可能需要从一个用户列表中移除重复地址,或从一个交易列表中提取唯一的交易 ID。这些操作不仅涉及数据的正确性,还直接影响到合约的执行成本。...那么,在 Solidity 中,如何高效地对数组进行去重?这是一个值得深入探讨的话题。本文将介绍几种常见的去重方法,并分析它们的优缺点,帮助你在实际开发中选择最合适的策略。...根据数组的长度是否固定,Solidity 中的数组可以分为静态数组和动态数组。 2.1 Solidity 中数组的基本使用方法 在 Solidity 中,定义和使用数组的方法非常直观。...为了减少不必要的 gas 消耗,开发者通常会在合约逻辑中慎重考虑数组的使用方式和操作方法。例如,尽量避免在循环中进行多次写操作,或者在不必要的情况下使用动态数组。...四、方法一:使用集合(或映射)进行去重 下面是一个使用 openzepplin 的 EnumerableSet 库来快速去重空投地址的智能合约示例: // SPDX-License-Identifier
背景 图像相比文字能够提供更加生动、容易理解及更具艺术感的信息,是人们转递与交换信息的重要来源,也是图像识别领域的一个重要问题,图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题...图像分类在很多领域有广泛应用,包括安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。...一般来说,图像分类通过手工特征或特征学习方法对整个图像进行全部描述,然后使用分类器判别物体类别,因此如何提取图像的特征至关重要。...但是如果靠自己实现一个图像识别算法是不容易的,我们可以使用ImageAI来完成这样一个艰巨的任务。...技术方案 使用云函数实现,详细步骤如下: 在云控制台新建python云函数模板 编写代码,实现如下: from imageai.Prediction import ImagePrediction import
后者,则直接训练一个多标签的分类器,所使用的标签为0,1,0,0…这样的向量,使用hanmming距离等作为优化目标。 类别不平衡问题 在很多情况下,可能会遇到数据不平衡问题。数据不平衡是什么意思呢?...欠采样:对数据量大的类别进行采样,降低二者的不平衡程度。 数据扩充:对数据量小的类别进行扩充。...图像分类模型 提升分类模型精度的方法 数据扩充(数据增强) 深度学习依赖于大数据,使用更多的数据已被证明可以进一步提升模型的精度。...随着扩充的处理,将会免费获得更多的数据,使用的扩充方法取决于具体任务,比如,你在做自动驾驶汽车任务,可能不会有倒置的树、汽车和建筑物,因此对图像进行竖直翻转是没有意义的,然而,当天气变化和整个场景变化时...,对图像进行光线变化和水平翻转是有意义的。
1,分Window进行Transformer计算,将自注意力计算量从输入尺寸的平方量级降低为线性量级。 2,使用Shift Window 即窗格偏移技术 来 融合不同窗格之间的信息。...(SW-MSA) 3,使用类似七巧板拼图技巧 和Mask 技巧 来对 Window偏移后不同大小的窗格进行注意力计算以提升计算效率。...5,使用Patch Merging技巧来 实现特征图的下采样,作用类似池化操作但不易丢失信息。 6,使用不同大小的Window提取不同层次的特征并进行融合。...SwinTransformer这个backbone结构表达能力非常强,同时适用性广泛,可适用于图片分类,分割,检测等多种任务,而且结构设计和实验工作都做得比较touch,所以被评为了2021年的ICCV...下面的范例我们微调 timm库中的 SwinTransformer模型来 做一个猫狗图片分类任务。
使用CNN进行图像分类是很稀疏平常的,其实使用RNN也是可以的. 这篇介绍的就是使用RNN(LSTM/GRU)进行mnist的分类,对RNN不太了解的可以看看下面的材料: 1....RNN进行mnist的分类呢?...当我们得到最终的输出的时候将其做一次线性变换就可以加softmax来分类了,其实挺简单的....定义网络 我们使用3层的GRU,hidden units是200的带dropout的RNN来作为mnist分类的网络,具体代码如下: cells = list() for _ in range(num_layers...训练和测试 分类嘛,还是使用cross entropy作为loss,然后计算下错误率是多少,代码如下: batch_size = 64, lr = 0.001 # placeholders input_x
很多情况下,对格式化为二维数组的数据进行分析时,都很有可能涉及到滑动窗口。 滑动窗口操作非常普遍,非常有用。它们也很容易在Python中实现。...样例数组 ? 3x3的滑动窗口 创建一个NumPy数组 为了实现一些简单的示例,让我们创建上面所示的数组。首先,导入numpy。...import numpy as np 然后使用arange创建一个7×7的数组,值范围从1到48。另外,创建另一个包含无数据值的数组,该数组的形状和数据类型与初始数组相同。...特别是在使用大型NumPy数组时。这是完全正确。尽管如此,我们将首先看一个使用循环的示例,因为这是一种简单的方法来概念化在移动窗口操作中发生的事情。...向量化滑动窗口 Python中的数组循环通常计算效率低下。通过对通常在循环中执行的操作进行向量化,可以提高效率。移动窗口矢量化可以通过同时抵消数组内部的所有元素来实现。 如下图所示。
图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉中重要的基础问题,也是图像检测、图像分割、物体跟踪、行为分析等其他高层视觉任务的基础,在许多领域都有着广泛的应用。...这里将介绍如何在PaddlePaddle下使用AlexNet、VGG、GoogLeNet、ResNet、Inception-v4、Inception-ResNet-v2和Xception模型进行图像分类...AlexNet、VGG、GoogLeNet、ResNet、Inception-v4、Inception-ResNet-v2和Xception模型中的一个模型进行图像分类。...使用GoogLeNet模型 GoogLeNet在训练阶段使用两个辅助的分类器强化梯度信息并进行额外的正则化。...代码使用paddle.infer判断image_list_file中每个图像的类别,并进行输出。 |3.
突然想起numpy这个超强大的科学计算库,于是乎就用几行代码写了一个矩阵求逆的程序。...import numpy as np import fractions a = np.array([[1, 1, 1], [0, 0.5, -2], [0, 1, 1]]) #设置以分数形式显示 np.set_printoptions
SimHash算法思想 假设我们有海量的文本数据,我们需要根据文本内容将它们进行去重。...对于文本去重而言,目前有很多NLP相关的算法可以在很高精度上来解决,但是我们现在处理的是大数据维度上的文本去重,这就对算法的效率有着很高的要求。...SimHash算法是Google公司进行海量网页去重的高效算法,它通过将原始的文本映射为64位的二进制数字串,然后通过比较二进制数字串的差异进而来表示原始文本内容的差异。 回到顶部 3....当文本内容较长时,使用SimHash准确率很高,SimHash处理短文本内容准确率往往不能得到保证; 2....文本内容中每个term对应的权重如何确定要根据实际的项目需求,一般是可以使用IDF权重来进行计算。
有一个文本gamebill.txt,求出3个人累计消费的金额,按照金额的大小排序,需要使用awk的数组 答案:cat gamebill.txt |tail -n +2|awk ‘{money[1]+=
序 本文主要研究下如何使用opennlp进行文档分类 DoccatModel 要对文档进行分类,需要一个最大熵模型(Maximum Entropy Model),在opennlp中对应DoccatModel...cat.size()); } 这里为了方便测试,先手工编写DocumentSample来做训练文本 categorize方法返回的是一个概率,getBestCategory可以根据概率来返回最为匹配的分类...本文仅仅是使用官方的测试源码来做介绍,读者可以下载个中文分类文本训练集来训练,然后对中文文本进行分类。 doc Document Categorizer API
作者 | Vivek Amilkanthawar 来源 | Towards Data Science 编辑 | 代码医生团队 对于给定的音频数据集,可以使用Spectrogram进行音频分类吗?...尝试使用Google AutoML Vision。把音频文件转换成各自的频谱图,并使用频谱图作为分类问题的图像。 这是频谱图的正式定义 频谱图是信号频率随时间变化的直观表示。...只需几个小时的工作,在AutoML Vision的帮助下,现在非常确定使用其频谱图对给定音频文件的分类可以使用机器学习视觉方法完成。...有了这个结论,可以使用CNN构建自己的视觉模型,并进行参数调整并产生更准确的结果。...如果不想构建自己的模型,请继续使用更多节点小时训练相同的模型,并使用PREDICT选项卡中的说明在生产中使用您的模型。
使用深度学习进行图像分类 解决任何真实问题的重要一步是获取数据。Kaggle提供了大量不同数据科学问题的竞赛。...我们将挑选一个2014年提出的问题,然后使用这个问题测试本章的深度学习算法,并在第5章中进行改进,我们将基于卷积神经网络(CNN)和一些可以使用的高级技术来改善图像识别模型的性能。...可以用下面的代码对索引进行无序排列: 在上面的代码中,我们使用无序排列后的索引随机抽出2000张不同的图片作为验证集。同样地,我们把训练数据用到的图片划分到train目录。...下面的代码演示了如何使用ImageFolder类进行变换和加载图片: train对象为数据集保留了所有的图片和相应的标签。...当pretrained为True时,算法的权重已为特定的ImageNet分类问题微调好。ImageNet预测的类别有1000种,包括汽车、船、鱼、猫和狗等。
Outlook不愧为Office家族中的一员,相比国内FoxMail来说功能要强大的多。若再配上Exchange,那确实十分无敌。
安装NumPy 在使用NumPy之前,首先需要安装它。可以使用以下命令使用pip进行安装: bashCopy codepip install numpy 确保你的Python环境中已经安装了pip。...数组的创建与基本操作 创建数组 使用NumPy创建数组是非常简单的,可以通过将普通的Python列表或元组传递给numpy.array函数来实现。...数组的索引与切片 数组索引 NumPy数组的索引从0开始,可以使用整数索引访问数组的元素。...NumPy允许将多个数组按照指定的轴进行拼接,以及在指定的位置分裂数组。...以下是一些性能优化的技巧: 使用向量化操作: 尽量使用NumPy的向量化操作,避免使用循环,以充分利用底层优化。 避免复制大数组: 在处理大数组时,尽量避免不必要的数据复制,以节省内存和提高速度。
领取专属 10元无门槛券
手把手带您无忧上云