Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块 今天讲讲pandas...模块:将两个Df进行合并 Part 1:示例 已知df_1,有3列["time", "pos", "value1"] 已知df_2,有3列["pos", "value2", "value3"] 以pos...列作为连接,将两个Df合并成一个Df,效果如下图 合并 ?...Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-2", "2019-11-2", "2019-11-2"], "pos...df_1作为基准,在示例中发现df_merge_1没有P4点 同理df_merge_2中time及value1没有数据 那么使用场景是什么呢?
样例数据 df = pd.DataFrame({‘X’: [1, 2, 7, 5, 10], ‘Y’: [4, 3, 8, 2, 9]}) df[‘X’] [[]] df[[‘X’]]...df[‘X’]更像是pd.series类型的,而df[[“X”]]是pd.Dateframe类型,事实也的确如此。...type(df[‘X’]) type(df[[‘X’]]) 除此之外,df[[‘X’,‘Y’]]这样的写法也是被支持的,而df[‘X’,‘Y’]则不被允许。...df[[‘X’,‘Y’]]
Pandas查询数据的简便方法df.query pandas中数据查询query函数 方法对比: 使用df[(df[“a”] > 3) & (df[“b”]<5)]的方式; 使用df.query...str.replace("℃", "").astype('int32') 使用dataframe条件表达式查询 最低温度低于-10度的列表 df[df["yWendu"] < -10].head()...359 2018-12-26 -2 -11 晴~多云 东北风 2级 26 优 1 360 2018-12-27 -5 -12 多云~晴 西北风 3级 48 优 1 复杂条件查询 注意,组合条件用&符号合并...aqi aqiInfo aqiLevel 235 2018-08-24 30 20 晴 北风 1-2级 40 优 1 249 2018-09-07 27 16 晴 西北风 3-4级 22 优 1 使用...=, >=, > 单变量操作符: - 多变量操作符: +, -, *, /, % df.query中可以使用@var的方式传入外部变量 df.query支持的语法来自NumExpr,地址: https
(df['score_math'].apply(np.mean)) pandas.core.series.Series'> #逐行求每个学生的平均分 >>> df.apply(np.mean...()的特例,可以对pandas对象进行逐行或逐列的处理; 能使用agg()的地方,基本上都可以使用apply()代替。...96 92 min 59 70 3)使用字典可以对特定列应用特定及多个函数; 例:对数学成绩求均值和最小值,对音乐课求最大值 >>> df.agg...注意:df.transform(np.mean)将报错,转换是无法产生聚合结果的 #将成绩减去各课程的平均分,使用apply、agg、transfrom都可以实现 >>> df.transform(lambda...map()操作 通过以上分析我们可以看到,apply、agg、transform三种方法都可以对分组数据进行函数操作,但也各有特色,总结如下: apply中自定义函数对每个分组数据单独进行处理,再将结果合并
问题描述:使用pandas把多个相同结构的Excel文件合并为一个。 原始数据格式: 参考代码: 合并结果:
文章目录 list转数据框(Dataframe) pandas读取无头csv 重新采样 pandas 读取 excel list转数据框(Dataframe) # -*- coding:utf-8 -*...- # /usr/bin/python # 字典转数据框(Dataframe) from pandas.core.frame import DataFrame a=[1,2,3,4]#列表a b=[...将包含不同子列表的列表转换为数据框 a=[[1,2,3,4],[5,6,7,8]]#包含两个不同的子列表[1,2,3,4]和[5,6,7,8] data=DataFrame(a)#这时候是以行为标准写入的 print(data) pandas...读取无头csv import pandas as pd df = pd.read_csv('allnodes.csv',header = None)#因为没有表头,不把第一行作为每一列的索引 data...= [] for i in df.index: data.append(tuple(df.values[
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 实现对Dataframe的遍历 Part 1:目标 pandas功能很强大,我们可以使用pandas直接读取数据库获取一个Df,也可以直接读取Excel...获取一个Df,等等 那么对于生成的Df想获取其中每一个元素怎么实现呢?...本文就是实现对Df的遍历循环,获取每一行每一列的内容 结果如图 ?...Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-02", "2019-11-03", "2019-11-04", "2019-11-05
merge 通过键拼接列 pandas提供了一个类似于关系数据库的连接(join)操作的方法merage,可以根据一个或多个键将不同DataFrame中的行连接起来 语法如下: merge(left...sort:默认为True,将合并的数据进行排序。...left_index=true,right_index=True (最好使用join) join 拼接列,主要用于索引上的合并 join方法提供了一个简便的方法用于将两个DataFrame中的不同的列索引合并成为一个...,可以合并相同或相似的索引,不管他们有没有重叠列。...可以理解为 concat 函数使用索引作为“连接键”。
Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块 今天讲讲pandas...Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-2", "2019-11-2", "2019-11-2", "2019-11-3",...= pd.DataFrame(dict_1, columns=["time", "pos", "value1", "value2", "value3"])df_2 = df.pivot(index="...pos", columns='time', values='value1')print(df)print("\n")print(df_2) 代码截图 ?...如果调换行列df_3 = df.pivot(index="time", columns='pos', values='value1'),结果如下图 结合上一章节,是不是可以快速算出每一个pos的各种统计值
# concat函数默认使用的是外连接,会保留每个DataFrame中的所有行。...也可以通过设定join参数,使用内连接: In[27]: pd.concat(s_list, join='inner', keys=['2016', '2017'], axis='columns',...len(df_list) Out[31]: 14 # 一共返回了14个表的DataFrame,取第一个 In[32]: df0 = df_list[0] df0.shape Out[...4. concat, join, 和merge的区别 concat: Pandas函数 可以垂直和水平地连接两个或多个pandas对象 只用索引对齐 索引出现重复值时会报错 默认是外连接(也可以设为内连接...# 要使用concat,需要将item和store两列放入两个DataFrame的行索引。
系统:Windows 10 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 pandas:1.1.5 这个系列讲讲Python的科学计算及可视化...今天讲讲pandas模块 生成一个空的df Part 1:场景描述 一些情况下需要对df进行操作,若这个df是中间计算出来,有可能是空字符串,这样后续的很多运算就会报错 其中的一个方法就是给其赋值一个空的...df Part 2:代码1 import pandas as pd df = pd.DataFrame(columns=['A', 'B', 'C', 'D']) print(df) if df.empty...: print("为空的df") print(type(df)) 代码截图 执行结果 Part 3:代码2 import pandas as pd df = pd.DataFrame...df来说,其实可以不需要列名 代码2中无列名,生成的空df更纯粹一点 注意两者的类型都是pandas.core.frame.DataFrame ---- 本文为原创作品,欢迎分享朋友圈
一、概述 现有一个excel文件examples.xlsx,内容如下: 合并去重后,效果如下: 那么需求如下: 公司去重,保留一个 多个地区合并为一行,用逗号隔开 收入进行累计计算 最后将统计结果,.../usr/bin/python3 # -*- coding: utf-8 -*- import pandas as pd def computer(x): # 数据计算 return pd.Series...join(list(set((','.join(x['地区']).split(','))))), '收入': sum(x['收入']), }) # 读取原始数据excel _df... = pd.read_excel('examples.xlsx', sheet_name='Sheet1') # 使用groupby进行分组 res = _df[['公司', '地区', '收入']].
Pandas-19.合并/连接 merge()函数可以让DataFrame对象具有标准数据库操作: pd.merge(left, right, how='inner', on=None, left_on...默认为True,设置为False时,在很多情况下大大提高性能。...以如下代码作为例子 import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex...how参数,指定连接方式,如果组合键没有出现在左侧或者右侧表中,连接表值为NA: 合并方法 SQL等效 描述 left LEFT OUTER JOIN 使用左侧对象的键 right RIGHT OUTER...JOIN 使用右侧对象的键 outer FULL OUTER JOIN 使用键的联合 inner INNER JOIN 使用键的交集 left join: print(pd.merge(left,right
系统:Windows 11 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 这个系列讲讲Python的科学计算及可视化 pandas模块 今天讲讲如何讲一个列表转换为...df Part 1:场景说明 我们在工作中可能需要对一些列表或者字典数据进行运算 当然我们可以通过循环判断一波处理得到想要的结果,但着实复杂低效 遇到这种计算问题,自然想到pandas这个非常好用的库...那我们只需要将需要处理的列表字典转换为pandas的df,这样后续处理就非常的高效了 Part 2: 代码 import pandas as pd list_1 = [{"a": 1, "b":...= pd.DataFrame(list_1) print("\ndf内容:") print(df.head(5)) 图1 代码截图 图2 执行结果 Part 3:部分代码说明 df = pd.DataFrame...(list_1),核心就是将该列表传给pd.DataFrame 观察执行结果,规律: 列表中的每一个元素是一个字典 每个字典的键是一样的,转换后对应df的列名 生成的df行索引采用自然数 本文为原创作品
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 对不同df进行按行或者按列的拼接 Part 1:场景描述 ?...import pandas as pd # 显示所有列 pd.set_option('display.max_columns', None) # 显示所有行 pd.set_option('display.max_rows...# df = pd.concat([df_1, df_2, df_3]) # print("\n", "df = pd.concat([df_1, df_2, df_3])", "\n", df, "\...n") df = pd.concat([df_1, df_2, df_3], axis=1) print("\n", "df = pd.concat([df_1, df_2, df_3], axis=
Pandas提供好几种方法和函数来实现合并DataFrame的操作,一般的操作结果是创建一个新的DataFrame,而对原始数据没有任何影响。...和df2合并。...使用how='outer' 合并在键上匹配的DataFrames,但也包括丢失或不匹配的值。...的最终状态: COL 1 COL 2 COL 3 0 X X O 1 X O X 2 O X X 结论 Pandas为合并DataFrames...虽然大多数情况下,merge() 已经足够了,但在某些情况下,可能需要使用concat()来按行合并,或者使用join(),或者使用combine_first() 和 update()来填充缺失值。
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算版块 今天讲讲pandas模块:根据条件对Df进行筛选 Part 1:示例 已知df_1,有3列["value1", "value2", "value3"], 不同筛选条件下,获取新的...df_2 ? df_3 ? df_4 ? df_5 ?...Part 2:代码 import pandas as pd dict_1 = {"value1": ["P1", "P2", "P3"], "value2": [0.5, 0.8,...2)] 逻辑与,使用 & 逻辑或,使用 | 比较运算符直接使用>,< 在一定范围内使用isin,之前的文章有介绍过
本文主要是关于pandas的一些基本用法。 #!...DataFrame res = pd.concat([df1, df2, df3], axis = 0) print res # 横向合并三个DataFrame res = pd.concat([df1..., df2, df3], axis = 1) print res # 合并的同时index重新排序 res = pd.concat([df1, df2, df3], axis = 0, ignore_index...合并模式为inner res = pd.concat([df1, df2], join = 'inner') print res # 合并模式为inner, 同时重新排序 res = pd.concat...res = pd.concat([df1, df2], axis = 1) print res # 横向合并, 按照df1的index, 忽略df2不一致的index res = pd.concat
阅读完本,你可以知道: 1 数据合并是什么 2 pandas的concat()方法使用 1 数据合并 数据合并是PDFMV框架中Data环节的重要操作之一。...2 pandas的concat()方法 pandas库提供了concat()方法来完成数据的合并。...1.1 数据合并—纵向拓展 举例: import numpy as np import pandas as pd # 定义数据(字典数据结构) data1 = {'Name':['Jai', 'Princi...\n", df1) # 数据合并(合并两个数据框) frames = [df, df1] res1 = pd.concat(frames) print(res1) 结果: 把创建的两个数据框按着纵向拓展生成了一个新的数据框...,设置为某个数据框的索引,表示按着指定索引进行数据横向合并 例子1: import pandas as pd data1 = {'Name':['Jai', 'Princi', 'Gaurav',
一、引言在数据分析领域,Pandas是一个强大的Python库,它提供了灵活高效的数据结构和数据分析工具。其中,数据的合并操作是数据预处理中不可或缺的一部分。...本文将深入探讨Pandas中的两种主要合并方法——concat和merge,从基础概念到常见问题,再到报错解决,帮助读者全面掌握这两种方法。...'] = df['score'].astype(int) # 转换为整型五、常见报错及避免方法(一)KeyError当使用merge时,如果指定的用于合并的键不存在于其中一个DataFrame中,就会抛出...为了避免这种情况,在合并之前先检查列名是否正确,或者使用if 'key' in df.columns:语句来判断列是否存在。...总之,concat和merge是Pandas中非常重要的数据合并工具,熟练掌握它们的用法以及应对常见问题的方法,能够大大提高数据分析工作的效率。
领取专属 10元无门槛券
手把手带您无忧上云