首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

​Pandas库的基础使用系列---数据读取

网站:国家数据 (stats.gov.cn)如何加载数据当我们有了数据后,如何读取它里面的内容呢我们在根目录下创建一个data的文件夹,用来保存我们的数据,本次演示使用的数据集是行政区划我们可以点击右上角的下载图标进行下载为了演示...我们新建一个day01的目录用来保存我们的notebook选择默认的即可我们为了能使用pandas,我们需要通过pip 进行安装,在notebook中安装,还是比较方便的,只需输入以下内容!...导入pandasimport pandas as pd运行结束后,单元格的前面会出现一个编号,你的和我的不一样也没关系。加载数据df = pd.read_csv("...../data/年度数据.csv", encoding="utf-8", sep="\t")这里我们读取的是CSV文件,路径使用的是相对路径,由于这个csv并不是用逗号分隔的,而是用tab(制表符)分隔的,...结尾好了今天的内容就是这些,我们介绍了如何安装pandas这个库,以及如何读取csv和xls文件。赶快动手实践一下吧,我是Tango,一个热爱分享技术的程序猿,我们下期见。

33610

Pandas数据读取:CSV文件

引言Pandas 是 Python 中一个强大的数据分析库,它提供了大量的工具用于数据操作和分析。其中,read_csv 函数是 Pandas 中最常用的函数之一,用于从 CSV 文件中读取数据。...读取 CSV 文件假设我们有一个名为 data.csv 的文件,我们可以使用以下代码读取该文件:df = pd.read_csv('data.csv')print(df.head()) # 打印前5行数据...数据类型问题问题描述:Pandas 可能会自动推断某些列的数据类型,导致数据类型不符合预期。解决方案:使用 dtype 参数指定每列的数据类型。...日期时间解析问题描述:如果 CSV 文件中包含日期时间字段,默认情况下 Pandas 不会将其解析为日期时间类型。解决方案:使用 parse_dates 参数指定需要解析的列。...本文介绍了 read_csv 的基本用法,常见问题及其解决方案,并通过代码案例进行了详细说明。希望本文能帮助你在实际工作中更高效地使用 Pandas 进行数据读取和处理。

92820
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas 读取csv 数据 read_csv 参数详解

    Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。...usecols: 返回的列,可以是列名的列表或由列索引组成的列表。 dtype: 字典或列表,指定某些列的数据类型。 skiprows: 需要忽略的行数(从文件开头算起),或需要跳过的行号列表。...222@qq.com 2 王五 女 24 233@qq.com ······ index_col 用作行索引的列编号或列名 index_col参数在使用pandas的read_csv函数时用于指定哪一列作为...如果设置为None(默认值),CSV文件中的行索引将用作DataFrame的索引。如果设置为某个列的位置(整数)或列名(字符串),则该列将被用作DataFrame的索引。...当你知道某些列的数据类型时,可以使用dtype参数来提高读取文件的效率,并且可以预防可能发生的类型错误。

    1.3K10

    使用pandas高效读取筛选csv数据

    前言在数据分析和数据科学领域中,Pandas 是 Python 中最常用的库之一,用于数据处理和分析。本文将介绍如何使用 Pandas 来读取和处理 CSV 格式的数据文件。什么是 CSV 文件?...可以使用 pip 在命令行中安装 Pandas:pip install pandas使用 Pandas 读取 CSV 文件要使用 Pandas 读取 CSV 文件,可以按照以下步骤进行:导入 Pandas...index_col: 指定哪一列作为索引列。dtype: 指定每列的数据类型。skiprows: 跳过指定行数的数据。na_values: 将指定值视为空值。...库读取 CSV 格式的数据文件。...通过简单的几行代码,您可以快速加载 CSV 数据,并开始进行数据分析和处理。Pandas 提供了丰富的功能和选项,以满足各种数据处理需求,是数据科学工作中的重要工具之一。

    56610

    Python使用pandas读取excel表格数据

    导入 import pandas as pd 若使用的是Anaconda集成包则可直接使用,否则可能需要下载:pip install pandas 读取表格并得到表格行列信息 df=pd.read_excel...格式: 直接print(df)得到的结果: 对比结果和表格,很显然表格中的第一行(黄色高亮部分)被定义为数据块的列下标,而实际视作数据的是后四行(蓝色高亮部分);并且自动在表格第一列之前加了一个行索引...用df.ix[i,j]读取数据并复制入二维数组中,其中for i in range(0,height)循环表示从下标0到下标height-1(不包含height),得到的输出如下: 对代码做一些补充说明...比如我上述例子中列索引为表格的第一行{1,2,3,4},而行索引为读取时自动添加的。 经过实验这种情况将会优先使用表格行列索引,也就对应了上面代码中得到的结果。...在表格中自定义行列索引的情况 如果表格是下面这样的形式: 想要让读取得到的DataFrame行索引为{‘one’,‘two’,‘three’,‘four’},列索引为{‘一’,‘二’,‘三’,

    3.4K10

    使用CSV模块和Pandas在Python中读取和写入CSV文件

    什么是CSV文件? CSV文件是一种纯文本文件,其使用特定的结构来排列表格数据。CSV是一种紧凑,简单且通用的数据交换通用格式。许多在线服务允许其用户将网站中的表格数据导出到CSV文件中。...CSV文件将在Excel中打开,几乎所有数据库都具有允许从CSV文件导入的工具。标准格式由行和列数据定义。此外,每行以换行符终止,以开始下一行。同样在行内,每列用逗号分隔。 CSV样本文件。...Python CSV模块 Python提供了一个CSV模块来处理CSV文件。要读取/写入数据,您需要遍历CSV行。您需要使用split方法从指定的列获取数据。...使用Pandas读取CSV文件 Pandas是一个开源库,可让您使用Python执行数据操作。熊猫提供了一种创建,操作和删除数据的简便方法。...在仅三行代码中,您将获得与之前相同的结果。熊猫知道CSV的第一行包含列名,它将自动使用它们。 用Pandas写入CSV文件 使用Pandas写入CSV文件就像阅读一样容易。您可以在这里说服。

    22.5K20

    盘点Pandas中csv文件读取的方法所带参数usecols知识

    一、前言 前几天在Python最强王者群有个叫【老松鼠】的粉丝问了一个关于Pandas中csv文件读取的方法所带参数usecols知识问题,这里拿出来给大家分享下,一起学习。...usecols是先从读取到的数据判断出当前的列名并作为返回值,类似于列表,使用函数调用时,例如lambda x:各个元素都会被使用到,类似于map(lambda x: x, iterable), iterable...就是usecols的返回值,lambda x与此处一致,再将结果传入至read_csv中,返回指定列的数据框。...c,就是你要读取的csv文件的所有列的列名 后面有拓展一些关于列表推导式的内容,可以学习下。...这篇文章基于粉丝提问,针对Pandas中csv文件读取的方法所带参数usecols知识,给出了具体说明和演示,顺利地帮助粉丝解决了问题!当然了,在实际工作中,大部分情况还是直接全部导入的。

    3K20

    pandas读取excel某一行_python读取csv数据指定行列

    大家好,又见面了,我是你们的朋友全栈君。 pandas中查找excel或csv表中指定信息行的数据(超详细) 关键!!!!使用loc函数来查找。...话不多说,直接演示: 有以下名为try.xlsx表: 1.根据index查询 条件:首先导入的数据必须的有index 或者自己添加吧,方法简单,读取excel文件时直接加index_col...(注意点:索引) 2.已知数据在第几行找到想要的数据 假如我们的表中,有某个员工的工资数据为空了,那我们怎么找到自己想要的数据呢。...data[i][j] = charuzhi(bumen) 原理很简单,首先检索全部的数据,然后我们可以用pandas中的iloc函数。...#与上面的一样 以上全过程用到的库: pandas,xlrd , openpyxl 5.找出指定的行和指定的列 主要使用的就是函数iloc data.iloc[:,:2] #即全部行,前两列的数据

    3.8K20

    用Pandas从HTML网页中读取数据

    首先,一个简单的示例,我们将用Pandas从字符串中读入HTML;然后,我们将用一些示例,说明如何从Wikipedia的页面中读取数据。...从CSV文件中读入数据,可以使用Pandas的read_csv方法。...我们平时更多使用维基百科的信息,它们通常是以HTML的表格形式存在。 为了获得这些表格中的数据,我们可以将它们复制粘贴到电子表格中,然后用Pandas的read_excel读取。...函数的完整使用方法,下面演示示例: 示例1 第一个示例,演示如何使用Pandas的read_html函数,我们要从一个字符串中的HTML表格读取数据。...DataFrame类型 本文中,学习了用Pandas的read_html函数从HTML中读取数据的方法,并且,我们利用维基百科中的数据创建了一个含有时间序列的图像。

    10.3K20

    读取文档数据的各列的每行中

    读取文档数据的各列的每行中 1、该文件的内容被读 [root@dell leekwen]# cat userpwd 1412230101 ty001 1412230102 ty002..., 它的第一列值是1512430102, 它的第二列值为ty003 当前处理的是第4, 内容是:1511230102 ty004, 它的第一列值是1511230102,...它的第二列值为ty004 当前处理的是第5, 内容是:1411230102 ty002, 它的第一列值是1411230102, 它的第二列值为ty002 当前处理的是第6, 内容是...它的第一列值是1412290102, 它的第二列值为yt012 当前处理的是第8, 内容是:1510230102 yt022, 它的第一列值是1510230102,...它的第二列值为yt022 当前处理的是第9, 内容是:1512231212 yt032, 它的第一列值是1512231212, 它的第二列值yt032 版权声明:本文博客原创文章

    2.5K40

    在Pandas中更改列的数据类型【方法总结】

    例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...DataFrame 如果想要将这个操作应用到多个列,依次处理每一列是非常繁琐的,所以可以使用DataFrame.apply处理每一列。...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。...']}, dtype='object') >>> df.dtypes a object b object dtype: object 然后使用infer_objects(),可以将列’a’的类型更改为...astype强制转换 如果试图强制将两列转换为整数类型,可以使用df.astype(int)。 示例如下: ? ?

    23.5K30

    读取某个excel表格,但是某些列的标识带有空格,怎么去除呢?

    一、前言 前几天在Python最强王者群【wen】问了一个Pandas数据处理的问题,一起来看看吧。...请教个问题 我读取某个excle表格,但是某些列的标识带有空格,怎么去除呢,我把整个excel该成“string”格式并通过strip()函数处理,第一行的空格键还是存在?...粉丝自己的代码是df = df.astype('string').apply(lambda x:x.str.strip()),这里【?】看出来问题,strip删除头尾空格。 二、实现过程 这里【?】...df.columns], 后来【瑜亮老师】也给了一个代码,如下所示:df.columns = df.columns.str.replace(r" ", "", regex=True)顺利地解决了粉丝的问题...这篇文章主要盘点了一个pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    53620

    Pandas处理csv表格的时候如何忽略某一列内容?

    一、前言 前几天在Python白银交流群有个叫【笑】的粉丝问了一个Pandas处理的问题,如下图所示。 下面是她的数据视图: 二、实现过程 这里【甯同学】给了一个解决方法。...只需要在读取的时候,加个index_col=0即可。 直接一步到位,简直太强了!...当然了,这个问题还可以使用usecols来解决,关于这个参数的用法,之前有写过,可以参考这个文章:盘点Pandas中csv文件读取的方法所带参数usecols知识。 三、总结 大家好,我是皮皮。...这篇文章主要分享了Pandas处理csv表格的时候如何忽略某一列内容的问题,文中针对该问题给出了具体的解析和代码演示,帮助粉丝顺利解决了问题。...最后感谢粉丝【笑】提问,感谢【甯同学】给出的代码和具体解析。

    2.6K20

    【Python】基于某些列删除数据框中的重复值

    Python按照某些列去重,可用drop_duplicates函数轻松处理。本文致力用简洁的语言介绍该函数。...# coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库 import numpy as np #...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...原始数据中只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多列数去重,可以在subset中添加列。...如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

    24.4K31
    领券