读取数据时 , 通过将数据拆分为多个分区 , 以便在 服务器集群 中进行并行处理 ;
每个 RDD 数据分区 都可以在 服务器集群 中的 不同服务器节点 上 并行执行 计算任务 , 可以提高数据处理速度...;
2、RDD 中的数据存储与计算
PySpark 中 处理的 所有的数据 ,
数据存储 : PySpark 中的数据都是以 RDD 对象的形式承载的 , 数据都存储在 RDD 对象中 ;
计算方法...: 大数据处理过程中使用的计算方法 , 也都定义在了 RDD 对象中 ;
计算结果 : 使用 RDD 中的计算方法对 RDD 中的数据进行计算处理 , 获得的结果数据也是封装在 RDD 对象中的 ;
PySpark...二、Python 容器数据转 RDD 对象
1、RDD 转换
在 Python 中 , 使用 PySpark 库中的 SparkContext # parallelize 方法 , 可以将 Python...2, 3, 4, 5]
再后 , 并使用 parallelize() 方法将其转换为 RDD 对象 ;
# 将数据转换为 RDD 对象
rdd = sparkContext.parallelize(data