首页
学习
活动
专区
圈层
工具
发布

按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值

一、前言 前几天在Python星耀交流群有个叫【在下不才】的粉丝问了一个Pandas的问题,按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值,这里拿出来给大家分享下,一起学习...888] df = pd.DataFrame({'lv': lv, 'num': num}) def demean(arr): return arr - arr.mean() # 按照"lv"列进行分组并计算出..."num"列每个分组的平均值,然后"num"列内的每个元素减去分组平均值 df["juncha"] = df.groupby("lv")["num"].transform(demean) print(df...transform transform能返回完整数据,输出的形状和输入一致(输入是num列,输出也是一列),代码如下: import pandas as pd lv = [1, 2, 2, 3, 3...这篇文章主要分享了Pandas处理相关知识,基于粉丝提出的按照A列进行分组并计算出B列每个分组的平均值,然后对B列内的每个元素减去分组平均值的问题,给出了3个行之有效的方法,帮助粉丝顺利解决了问题。

5.1K20

Excel与pandas:使用applymap()创建复杂的计算列

标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...<=且<80 D:50<=且<70 F:<50 创建我们假设的学生和他们的学校平均数,我们将为学生的分数随机生成1到100之间的数字。...图1 创建一个辅助函数 现在,让我们创建一个取平均值的函数,并将其处理/转换为字母等级。 图2 现在我们要把这个函数应用到每个学生身上。那么,在列中对每个学生进行循环?不!...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。

6.2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Power BI: 使用计算列创建关系中的循环依赖问题

    文章背景: 在表缺少主键无法直接创建关系,或者需要借助复杂的计算才能创建主键的情况下,可以利用计算列来设置关系。在基于计算列创建关系时,循环依赖经常发生。...产品的价格有很多不同的数值,一种常用的做法是将价格划分成不同的区间。例如下图所示的配置表。 现在对价格区间的键值进行反规范化,然后根据这个新的计算列建立一个物理关系。...在这个例子中,修复方法很简单:使用DISTINCT代替VALUES。一旦改用DISTINCT,就可以正常创建关系了。结果如下图所示。 正确设置关系后,可以按价格区间切片了。...下面对因为与计算列建立关系而出现的循环依赖进行分析,包括为什么DISTINCT可以消除循环依赖。...由于两个依赖关系没有形成闭环,所以循环依赖消失了,可以创建关系。 3 避免空行依赖 创建可能用于设置关系的计算列时,都需要注意以下细节: 使用DISTINCT 代替VALUES。

    3.4K20

    python读取txt中的一列称为_python读取txt文件并取其某一列数据的示例

    python读取txt文件并取其某一列数据的示例 菜鸟笔记 首先读取的txt文件如下: AAAAF110 0003E818 0003E1FC 0003E770 0003FFFC 90 AAAAF110...读取txt文件并取其某一列数据的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。...()改变类型 data.iloc[:,1]=pd.to_datetime(data.iloc[:,1]) 注意:=号,这样在原始的数据框中,改变了列的类型 第三:查看列类型 print(data.dtypes...首先,观察数据可知,不同行的第一个数据元素不一样,所以考虑直接用正则表达式....然后我想读取这个文件了,我首先将上面的这个文件保存在我即将要创建的Python的文件目录下, 即读取文件成功.

    7.4K20

    使用Pandas返回每个个体记录中属性为1的列标签集合

    一、前言 前几天在J哥的Python群【Z】问了一个Pandas数据处理的问题,一起来看看吧。 各位群友,打扰了。能否咨询个pandas的处理问题?...左边一列id代表个体/记录,右边是这些个体/记录属性的布尔值。我想做个处理,返回每个个体/记录中属性为1的列标签集合。...二、实现过程 这里【Jin】大佬给了一个答案,使用迭代的方法进行,如下图所示: 如此顺利地解决了粉丝的问题。...后来他粉丝自己的朋友也提供了一个更好的方法,如下所示: 方法还是很多的,不过还得是apply最为Pythonic! 三、总结 大家好,我是皮皮。...往期精彩文章推荐: if a and b and c and d:这种代码有优雅的写法吗? Pycharm和Python到底啥关系?

    1.7K30

    如何使用Python中的装饰器创建具有实例化时间变量的新函数方法

    1、问题背景在Python中,我们可以使用装饰器来修改函数或方法的行为,但当装饰器需要使用一个在实例化时创建的对象时,事情就会变得复杂。...例如,我们想要创建一个装饰器,可以创建一个新的函数/方法来使用对象obj。如果被装饰的对象是一个函数,那么obj必须在函数创建时被实例化。...如果被装饰的对象是一个方法,那么必须为类的每个实例实例化一个新的obj,并将其绑定到该实例。2、解决方案我们可以使用以下方法来解决这个问题:使用inspect模块来获取被装饰对象的签名。...如果被装饰的对象是一个方法,则将obj绑定到self。如果被装饰的对象是一个函数,则实例化obj。返回一个新函数/方法,该函数/方法使用obj。...然后,dec装饰器会返回一个新函数/方法,该函数/方法使用obj。请注意,这种解决方案只适用于对象obj在实例化时创建的情况。如果obj需要在其他时间创建,那么您需要修改此解决方案以适应您的具体情况。

    3.4K10

    手把手教你用Python批量创建1-12月份的sheet表,每个表的第一行都有固定3个列标题:A,B,C

    今天继续给大家分享Python自动化办公的内容,最近我发现学习自动化办公的小伙伴还是挺多的,创建了一个自动化办公专辑,欢迎大家前往学习: 【Excel篇】 1、盘点4种使用Python批量合并同一文件夹内所有子文件夹下的...Excel文件内所有Sheet数据 2、手把手教你使用openpyxl库从Excel文件中提取指定的数据并生成新的文件(附源码) 3、手把手教你4种方法用Python批量实现多Excel多Sheet合并...4、手把手教你利用Python轻松拆分Excel为多个CSV文件 5、老板让我从几百个Excel中查找数据,我用Python一分钟搞定!...其实【LEE】自己也尝试使用Python来解决,不过却遇到了点问题,虽然Excel文件是创建了,但是后面的月份写入和列名写入失败了。...代码运行之后,在代码目录下会自动生成相应的Excel文件,如下图所示。 之后每个Excel表格中,也有对应的月份和A、B、C列名,如下图所示。 四、总结 我是Python进阶者。

    2.3K50

    2022-09-25:给定一个二维数组matrix,数组中的每个元素代表一棵树的高度。 你可以选定连续的若干行组成防风带,防风带每一列的防风高度为这一列的最大值

    2022-09-25:给定一个二维数组matrix,数组中的每个元素代表一棵树的高度。...你可以选定连续的若干行组成防风带,防风带每一列的防风高度为这一列的最大值 防风带整体的防风高度为,所有列防风高度的最小值。...比如,假设选定如下三行 1 5 4 7 2 6 2 3 4 1、7、2的列,防风高度为7 5、2、3的列,防风高度为5 4、6、4的列,防风高度为6 防风带整体的防风高度为5,是7、5、6中的最小值 给定一个正数...k,k 的行数,表示可以取连续的k行,这k行一起防风。...求防风带整体的防风高度最大值。 答案2022-09-25: 窗口内最大值和最小值问题。 代码用rust编写。

    3.8K10

    解决pandas.core.frame.DataFrame格式数据与numpy.ndarray格式数据不一致导致无法运算问题

    问题描述在pandas的DataFrame格式数据中,每一列可以是不同的数据类型,如数值型、字符串型、日期型等。而ndarray格式数据需要每个元素都是相同类型的,通常为数值型。...= series_a + 1上述代码中,我们创建了一个新的变量​​series_a​​,将列A转换为ndarray并使用pd.Series()将其转换为pandas的Series数据格式。...通过将DataFrame的某一列转换为ndarray,并使用pd.Series()将其转换为pandas的Series数据格式,可以避免格式不一致的错误。...我们希望通过计算​​Quantity​​列和​​Unit Price​​列的乘积来得到每个产品的销售总额。但是由于列中包含了不同的数据类型(字符串和数值),导致无法进行运算。...创建ndarray在numpy中,我们可以使用多种方式来创建ndarray对象:通过Python原生列表或元组创建:使用numpy.array()函数可以从一个Python原生列表或元组创建一个ndarray

    1.8K20

    Python数学建模算法与应用 - 常用Python命令及程序注解

    ¶ 在 Python 的 sorted 函数中,key 参数用于指定一个函数,该函数将被应用于要排序的每个元素,并返回一个用于排序的值。...内置函数之一,它用于对可迭代对象(如列表、元组等)中的每个元素应用指定的函数,并返回一个包含应用结果的新可迭代对象。...map 函数用于对可迭代对象中的每个元素应用指定的函数,并返回一个包含应用结果的新可迭代对象。 返回值不同: filter 函数返回一个新的可迭代对象,其中只包含满足条件的元素。...总结起来,filter 函数用于过滤可迭代对象中的元素,只保留满足指定条件的元素,而 map 函数用于对可迭代对象中的每个元素应用指定的函数,并返回一个包含应用结果的新可迭代对象。...zip函数¶ zip 函数是Python内置函数之一,它用于将多个可迭代对象中对应位置的元素打包成元组的形式,并返回一个新的可迭代对象。

    3.7K30

    利用NumPy和Pandas进行机器学习数据处理与分析

    Numpy介绍在进行科学计算和数据分析时,处理大量数据和进行高效的数值计算是不可或缺的。为了满足这些需求,Python语言提供了一个被广泛使用的库——Numpy。...它类似于Python中的列表或数组,但提供了更多的功能和灵活性。我们可以使用Series来存储和操作单个列的数据。...字典的键表示列名,对应的值是列表类型,表示该列的数据。我们可以看到DataFrame具有清晰的表格结构,并且每个列都有相应的标签,方便阅读访问和筛选数据我们可以使用索引、标签或条件来访问和筛选数据。...例如,要访问DataFrame中的一列数据,可以使用列名:# 访问列print(df['Name'])运行结果如下要访问DataFrame中的一行数据,可以使用iloc和loc方法:# 访问行print...例如,要添加一列数据,可以将一个新的Series赋值给DataFrame的一个新列名# 添加列df['Gender'] = ['Male', 'Female', 'Male', 'Female']print

    1.1K20

    Java数组全套深入探究——进阶知识阶段5、二维数组

    在二维数组中,每个元素都有一个特定的行索引和列索引,用于访问和操作该元素。 在程序设计中,二维数组通常用于表示具有多个维度的数据。...例如,在处理图像数据时,可以使用二维数组来表示像素矩阵,其中每个元素代表一个像素的颜色或亮度值。在处理表格数据时,可以使用二维数组来表示行和列之间的关系,其中每个元素包含一个特定的值。...// 给第一行第一列的元素赋值为1 array[1][2] = 5; // 给第二行第三列的元素赋值为5 在这个例子中,我们声明了一个3行4列的二维整型数组,并使用行索引和列索引来访问和赋值数组中的元素...int n = A[0].length; // 获取矩阵A的列数 int[][] C = new int[m][n]; // 创建一个新的矩阵C,大小与...[][] C = new int[m][p]; // 创建一个新的矩阵C,大小为m x p // 遍历矩阵A和B的每个元素,并进行乘法运算后存储到矩阵C中

    46510

    70个NumPy练习:在Python下一举搞定机器学习矩阵运算

    难度:2 问题:将iris_2d的花瓣长度(第3列)组成一个文本数组,如果花瓣长度为: <3则为'小' 3-5则为'中' '> = 5则为'大' 答案: 41.如何从numpy数组的现有列创建一个新的列...难度:2 问题:在iris_2d中为volume创建一个新列,其中volume是(pi x petallength x sepal_length ^ 2)/ 3。...难度:4 问题:计算独热编码。 输入: 输出: 答案: 52.如何创建按分类变量分组的行号? 难度:3 问题:创建由分类变量分组的行号。使用iris的species中的样品作为输入。...输入: 输出: 答案: 54.如何使用numpy排列数组中的元素? 难度:2 问题:为给定的数字数组a排序。 输入: 输出: 答案: 55.如何使用numpy对多维数组中的元素进行排序?...答案: 64.如何从二维数组中减去一维数组,其中一维数组的每个元素都从相应的行中减去? 难度:2 问题:从二维数组a_2d中减去一维数组b_1d,使得每个b_1d项从a_2d的相应行中减去。

    25.6K42

    向量化操作简介和Pandas、Numpy示例

    向量化操作示例 1、基本算术运算 一个具有两列的DataFrame, ' a '和' B ',我们希望以元素方式添加这两列,并将结果存储在新列' C '中。...假设你想计算一列中每个元素的平方: import pandas as pd data = {'A': [1, 2, 3]} df = pd.DataFrame(data) # Define...3、条件操作 也将矢量化用于条件操作,比如基于列a中的条件创建一个新的列D: import pandas as pd data = {'A': [1, 2, 3]} df = pd.DataFrame...lambda函数来检查' a '中的每个元素是偶数还是奇数,并将结果分配给' D '列。...传统的基于循环的处理 在许多编程场景中,可能需要对数据元素集合执行相同的操作,例如逐个添加两个数组或对数组的每个元素应用数学函数。一般都会使用循环一次迭代一个元素并执行操作。

    2K20

    手撕Python三大packages,看了他直接成为数模战神!

    例如: 二维数组:二维数组可以理解为一个表格,有行有列。创建二维数组时,我们传入一个由多个列表组成的列表,每个内部列表代表二维数组的一行。...元素级运算:numpy的强大之处在于它能快速地对数组中的每个元素进行运算。...比如,我们想把数组中的每个元素都乘以 2,只需要简单地使用乘法运算符*: 统计运算:numpy提供了许多方便的函数来计算数组元素的统计量。...然后将这个布尔值 Series 作为索引,从data这个DataFrame中筛选出对应True的行,组成新的DataFrame对象filtered_data并打印。...matplotlib是 Python 中广泛使用的数据可视化库,它能够创建各种精美的静态、动态以及交互式的可视化图表,让数据以直观易懂的图形形式展现出来。

    58610

    Python数据分析作业一:NumPy库的使用

    一、前言   NumPy(Numerical Python) 是 Python 中用于科学计算的基础包,用于科学计算和数据分析,也是大量 Python 数学和科学计算包的基础。...二、题目及答案解析 1、导入Numpy包并设置随机数种子为666 import numpy as np np.random.seed(666) 2、创建并输出一个包含12个元素的随机整数数组r1,元素的取值范围在...最终返回的列表中每个元素都是一个二元组,表示大于等于 90 的元素所在的行和列的组合。...counts = np.array([np.sum(f == i) for i in f]):这行代码使用列表推导式对拉平后的一维数组中的每个元素进行统计,计算每个元素在数组中出现的次数,并将结果存储为一个...rows = pos // r5.shape[1]:根据位置索引计算每个元素在原矩阵中的行坐标。 cols = pos % r5.shape[1]:根据位置索引计算每个元素在原矩阵中的列坐标。

    77200
    领券