作者:Pinar Ersoy 翻译:孙韬淳 校对:陈振东 本文约2500字,建议阅读10分钟 本文通过介绍Apache Spark在Python中的应用来讲解如何利用PySpark包执行常用函数来进行数据处理工作...SparkSQL相当于Apache Spark的一个模块,在DataFrame API的帮助下可用来处理非结构化数据。...通过名为PySpark的Spark Python API,Python实现了处理结构化数据的Spark编程模型。 这篇文章的目标是展示如何通过PySpark运行Spark并执行常用函数。...在本文的例子中,我们将使用.json格式的文件,你也可以使用如下列举的相关读取函数来寻找并读取text,csv,parquet文件格式。...API以RDD作为基础,把SQL查询语句转换为低层的RDD函数。
在 PySpark 中,可以使用SparkContext的parallelize方法将 Python 的列表转换为 RDD(弹性分布式数据集)。...以下是一个示例代码,展示了如何将 Python 列表转换为 RDD:from pyspark import SparkContext# 创建 SparkContextsc = SparkContext.getOrCreate...()# 定义一个 Python 列表data_list = [1, 2, 3, 4, 5]# 将 Python 列表转换为 RDDrdd = sc.parallelize(data_list)# 打印...RDD 的内容print(rdd.collect())在这个示例中,我们首先创建了一个SparkContext对象,然后定义了一个 Python 列表data_list。...接着,使用SparkContext的parallelize方法将这个列表转换为 RDD,并存储在变量rdd中。最后,使用collect方法将 RDD 的内容收集到驱动程序并打印出来。
一、什么是 DataFrame ? 在Spark中, DataFrame 是组织成 命名列[named colums]的分布时数据集合。...它在概念上等同于关系数据库中的表或R/Python中的数据框,但在幕后做了更丰富的优化。DataFrames可以从多种来源构建,例如:结构化数据文件、Hive中的表、外部数据库或现有RDD. ...DataFrame 首先在Spark 1.3 版中引入,以克服Spark RDD 的局限性。Spark DataFrames 是数据点的分布式集合,但在这里,数据被组织到命名列中。...最初,他们在 2011 年提出了 RDD 的概念,然后在 2013 年提出了数据帧,后来在 2015 年提出了数据集的概念。它们都没有折旧,我们仍然可以使用它们。...,请使用DataFrame; 如果 需要高级表达式、筛选器、映射、聚合、平均值、SUM、SQL查询、列式访问和对半结构化数据的lambda函数的使用,请使用DataFrame; 如果您希望在编译时具有更高的类型安全性
上面这段话说起来有点绕,简单理解就是当pyspark调用RDD的时候,Python会转化成Java调用spark集群分发任务。每一个任务具体在机器上执行的时候,还是以Python程序的方式执行。...本来Python的执行效率就低,加上中间又经过了若干次转换以及通信开销(占大头),这就导致了pyspark中的RDD操作效率更低。...甚至经过官方的测量,使用pyspark写DataFrame的效率已经和scala和java平起平坐了。 ? 所以如果我们要选择Python作为操作spark的语言,DataFrame一定是首选。...也就是说我们读入的一般都是结构化的数据,我们经常使用的结构化的存储结构就是json,所以我们先来看看如何从json字符串当中创建DataFrame。 首先,我们创建一个json类型的RDD。...我们也collect一下原本的RDD作为一下对比: ? 这下一对比我们就发现了,json格式的字符串果然可以被解析,并且RDD被转化成了表格格式的DataFrame。
由于主要是在PySpark中处理DataFrames,所以可以在RDD属性的帮助下访问底层RDD,并使用toDF()将其转换回来。这个RDD API允许指定在数据上执行的任意Python函数。...如果工作流从 Hive 加载 DataFrame 并将生成的 DataFrame 保存为 Hive 表,在整个查询执行过程中,所有数据操作都在 Java Spark 工作线程中以分布式方式执行,这使得...原因是 lambda 函数不能直接应用于驻留在 JVM 内存中的 DataFrame。 内部实际发生的是 Spark 在集群节点上的 Spark 执行程序旁边启动 Python 工作线程。...下图还显示了在 PySpark 中使用任意 Python 函数时的整个数据流,该图来自PySpark Internal Wiki....这个底层的探索:只要避免Python UDF,PySpark 程序将大约与基于 Scala 的 Spark 程序一样快。如果无法避免 UDF,至少应该尝试使它们尽可能高效。
Spark SQL增加了DataFrame(即带有Schema信息的RDD),使用户可以在Spark SQL中执行SQL语句,数据既可以来自RDD,也可以是Hive、HDFS、Cassandra等外部数据源...,还可以是JSON格式的数据 Spark SQL目前支持Scala、Java、Python三种语言,支持SQL-92规范。...Spark SQL填补了这个鸿沟: 首先,可以提供DataFrame API,可以对内部和外部各种数据源执行各种关系型操作 其次,可以支持大数据中的大量数据源和数据分析算法 Spark SQL可以融合:...DataFrame的推出,让Spark具备了处理大规模结构化数据的能力,不仅比原有的RDD转化方式更加简单易用,而且获得了更高的计算性能 Spark能够轻松实现从MySQL到DataFrame的转化,并且支持...在创建DataFrame时,可以使用spark.read操作,从不同类型的文件中加载数据创建DataFrame。
在这一文章系列的第二篇中,我们将讨论Spark SQL库,如何使用Spark SQL库对存储在批处理文件、JSON数据集或Hive表中的数据执行SQL查询。...这一版本中包含了许多新的功能特性,其中一部分如下: 数据框架(DataFrame):Spark新版本中提供了可以作为分布式SQL查询引擎的程序化抽象DataFrame。...JDBC服务器(JDBC Server):内置的JDBC服务器可以便捷地连接到存储在关系型数据库表中的结构化数据并利用传统的商业智能(BI)工具进行大数据分析。...通过调用将DataFrame的内容作为行RDD(RDD of Rows)返回的rdd方法,可以将DataFrame转换成RDD。...可以通过如下数据源创建DataFrame: 已有的RDD 结构化数据文件 JSON数据集 Hive表 外部数据库 Spark SQL和DataFrame API已经在下述几种程序设计语言中实现: Scala
Spark DataFrame可看作带有模式(Schema)的RDD,而Schema则是由结构化数据类型(如字符串、整型、浮点型等)和字段名组成。...3 数据分析选型:PySpark V.S R 语言 数据规模:如果需要处理大型数据集,则使用PySpark更为合适,因为它可以在分布式计算集群上运行,并且能够处理较大规模的数据。...由于Python是一种动态语言,许多Dataset API的优点已经自然地可用,例如可以通过名称访问行的字段。R语言也有类似的特点。...DataFrame可从各种数据源构建,如: 结构化数据文件 Hive表 外部数据库 现有RDD DataFrame API 在 Scala、Java、Python 和 R 都可用。...例如,在进行RDD和DataFrame之间的转换时,如果不导入spark.implicits.
Apache Spark允许用户读取、转换、聚合数据,还可以轻松地训练和部署复杂的统计模型。Java、Scala、Python、R和SQL都可以访问 Spark API。...由于具有单独的RDD转换和动作,DAGScheduler可以在查询中执行优化,包括能够避免shuffle数据(最耗费资源的任务)。...DataFrame DataFrame像RDD一样,是分布在集群的节点中的不可变的数据集合。然而,与RDD不同的是,在DataFrame中,数据是以命名列的方式组织的。...在这个意义上来说,DataFrame与关系数据库中的表类似。DataFrame提供了一个特定领域的语言API来操作分布式数据,使Spark可以被更广泛的受众使用,而不只是专门的数据工程师。...与Java或者Scala相比,Python中的RDD是非常慢的,而DataFrame的引入则使性能在各种语言中都保持稳定。 4.
,可以分配计算任务给各个计算节点(机器); 结构化数据存储及查询的问题:有Hbase、Bigtable等,可以快速获取/存储结构化的键值数据; 大数据挖掘的问题:有Hadoop的mahout,spark...在执行具体的程序时,Spark会将程序拆解成一个任务DAG(有向无环图),再根据DAG决定程序各步骤执行的方法。...PySpark是Spark的Python API,通过Pyspark可以方便地使用 Python编写 Spark 应用程序, 其支持 了Spark 的大部分功能,例如 Spark SQL、DataFrame...二、PySpark分布式机器学习 2.1 PySpark机器学习库 Pyspark中支持两个机器学习库:mllib及ml,区别在于ml主要操作的是DataFrame,而mllib操作的是RDD,即二者面向的数据集不一样...相比于mllib在RDD提供的基础操作,ml在DataFrame上的抽象级别更高,数据和操作耦合度更低。 注:mllib在后面的版本中可能被废弃,本文示例使用的是ml库。
一、目的与要求 1、通过实验掌握Spark SQL的基本编程方法; 2、熟悉RDD到DataFrame的转化方法; 3、熟悉利用Spark SQL管理来自不同数据源的数据。...系统中,命名为employee.txt,实现从RDD转换得到DataFrame,并按“id:1,name:Ella,age:36”的格式打印出DataFrame的所有数据。...创建DataFrame,并写出Python语句完成下列操作: >>> spark=SparkSession.builder.getOrCreate() >>> df = spark.read.json(...在使用Spark SQL之前,需要创建一个SparkSession对象。可以使用SparkSession的read方法加载数据。...最后,还掌握了RDD到DataFrame的转化方法,并可以利用Spark SQL管理来自不同数据源的数据。
在RDD中午发表是结构化数据,对RDD进行查询也不可行。使用RDD很容易但有时候处理元组会把代码弄乱。...引入DataFrame和Dataset可以处理数据代码更加易读,支持java、scala、python和R等。...就像上图这样,DataFrame和Dataset进行了缓存,在缓存时,他们以更加高效的列式自动存储数据,这种格式比java、Python对象明显更为紧凑,并进行了优化。...实践 在pyspark shell或spark-shell中,会自动创建一个名为spark的预配置SparkSession。...2、从RDD创建DataFrame 3、从Hive中的表中创建DataFrame 把DataFrame转换为RDD非常简单,只需要使用.rdd方法 ? 常用方法的示例 ?
根据它的研究论文,它比它的同行Hadoop快得多。数据可以缓存在内存中。在迭代算法中缓存中间数据提供了惊人的快速处理。Spark可以使用Java、Scala、Python和R进行编程。...DataFrame 列中的元素将具有相同的数据类型。DataFrame 中的行可能由不同数据类型的元素组成。基本数据结构称为弹性分布式数据集(RDD)。数据流是RDD上的包装器。...7.3 Structured Streaming 我们可以使用结构化流框架(PySpark SQL的包装器)进行流数据分析。...我们可以使用结构化流以类似的方式对流数据执行分析,就像我们使用PySpark SQL对静态数据执行批处理分析一样。正如Spark流模块对小批执行流操作一样,结构化流引擎也对小批执行流操作。...结构化流最好的部分是它使用了类似于PySpark SQL的API。因此,学习曲线很高。对数据流的操作进行优化,并以类似的方式在性能上下文中优化结构化流API。
Spark 执行的特点 中间结果输出:Spark 将执行工作流抽象为通用的有向无环图执行计划(DAG),可以将多 Stage 的任务串联或者并行执行。...数据格式和内存布局:Spark 抽象出分布式内存存储结构弹性分布式数据集 RDD,能够控制数据在不同节点的分区,用户可以自定义分区策略。...Spark 提供了大量的库,包括 SQL 和 DataFrames、用于机器学习的 MLlib、GraphX 和 Spark 流。您可以在同一个应用程序中无缝地组合这些库。...各种环境都可以运行,Spark 在 Hadoop、Apache Mesos、Kubernetes、单机或云主机中运行。它可以访问不同的数据源。...综上所述,PySpark是借助于Py4j实现了Python调用Java从而来驱动Spark程序的运行,这样子可以保证了Spark核心代码的独立性,但是在大数据场景下,如果代码中存在频繁进行数据通信的操作
DataFrame 概述 DataFrame可以翻译成数据框,让Spark具备了处理大规模结构化数据的能力。...比原有RDD转化方式更加简单,获得了更高的性能 轻松实现从mysql到DF的转化,支持SQL查询 DF是一种以RDD为基础的分布式数据集,提供了详细的结构信息。...传统的RDD是Java对象集合 创建 从Spark2.0开始,spark使用全新的SparkSession接口 支持不同的数据加载来源,并将数据转成DF DF转成SQLContext自身中的表,然后利用...(conf=SparkConf()).getOrCreate() 读取数据 df = spark.read.text("people.txt") df = spark.read.json("people.json...转成DF 利用反射机制去推断RDD模式 用编程方式去定义RDD模式 # 反射机制 from pyspark.sql import Row people = spark.sparkContext.textFile
,使之可以通过重启或重新处理,来处理任何类型的故障。...Spark一直处于不停的更新中,从Spark 2.3.0版本开始引入持续流式处理模型后,可以将原先流处理的延迟降低到毫秒级别。...一样,也是源源不断的数据流,区别在于,Spark Streaming采用的数据抽象是DStream(本质上就是一系列RDD),而Structured Streaming采用的数据抽象是DataFrame...Structured Streaming可以使用Spark SQL的DataFrame/Dataset来处理数据流。...虽然Spark SQL也是采用DataFrame作为数据抽象,但是,Spark SQL只能处理静态的数据,而Structured Streaming可以处理结构化的数据流。
为了使Spark能够利用目标平台上的硬件加速器,该版本增强了已有的调度程序,使集群管理器可以感知到加速器。...然后,用户可以调用新的RDD API来利用这些加速器。 结构化流的新UI 结构化流最初是在Spark 2.0中引入的。...在Databricks,使用量同比增长4倍后,每天使用结构化流处理的记录超过了5万亿条。 ? Apache Spark添加了一个专门的新Spark UI用于查看流jobs。...可观察的指标 持续监控数据质量变化是管理数据管道的一种重要功能。Spark 3.0引入了对批处理和流应用程序的功能监控。可观察的指标是可以在查询上定义的聚合函数(DataFrame)。...在这篇博文中,我们重点介绍了Spark在SQL、Python和流技术方面的关键改进。 除此之外,作为里程碑的Spark 3.0版本还有很多其他改进功能在这里没有介绍。
为了使Spark能够利用目标平台上的硬件加速器,该版本增强了已有的调度程序,使集群管理器可以感知到加速器。...然后,用户可以调用新的RDD API来利用这些加速器。 结构化流的新UI 结构化流最初是在Spark 2.0中引入的。...在Databricks,使用量同比增长4倍后,每天使用结构化流处理的记录超过了5万亿条。...Spark 3.0引入了对批处理和流应用程序的功能监控。可观察的指标是可以在查询上定义的聚合函数(DataFrame)。...在这篇博文中,我们重点介绍了Spark在SQL、Python和流技术方面的关键改进。 除此之外,作为里程碑的Spark 3.0版本还有很多其他改进功能在这里没有介绍。
所以,如果为了在个人PC上练习PySpark语法功能或者调试代码时,是完全可以在自己电脑上搭建spark环境的,更重要的windows系统也是可以的! ?...() # 输出4 03 PySpark主要功能介绍 Spark作为分布式计算引擎,主要提供了4大核心组件,它们之间的关系如下图所示,其中GraphX在PySpark中暂不支持。...RDD(Resilient Distributed DataSet,弹性分布式数据集)是Spark中的核心数据结构(Spark core),是完成分布式任务调度的关键,从名字缩写中可以看出其有3大特性:...进一步的,Spark中的其他组件依赖于RDD,例如: SQL组件中的核心数据结构是DataFrame,而DataFrame是对rdd的进一步封装。...; Streaming组件中的核心数据结构是Dstream,即离散流(discrete stream),本质就是一个一个的rdd; PySpark中目前存在两个机器学习组件ML和MLlib,前者是推荐的机器学习库
领取专属 10元无门槛券
手把手带您无忧上云