本文是「信用风险建模 in Python」系列的第一篇,其实在之前的 Cufflinks 那篇已经埋下了信用风险的伏笔,
大数据风控同传统风控在本质上没有区别,主要区别在于风控模型数据输入的纬度和数据关联性分析。据统计,目前银行传统的风控模型对市场上70%的客户是有效的,但是对另外30%的用户,其风控模型有效性将大打折扣。 大数据风控作为传统风控方式补充,主要利用行为数据来实施风险控制,用户行为数据可以作为另外的30%客户风控的有效补充。大数据风险控制的作用就是从原来被拒绝的贷款用户中找到合格用户,识别出已经通过审核的高风险客户和欺诈客户。 一、银行信用风险控制的原理 金融行业中,银行是对信用风险依赖最强的一个主体,银行本质
之前工作中涉及到信用风险,接下来几天就分享些我在信用风险建模领域的一些经验吧~
金融技术通常被称为金融科技,是技术创新领域增长最快的领域之一。金融科技指的是一套专注于在社会中提供金融服务的新方式的技术。金融行业的这场技术浪潮始于使用计算机记录金融交易,评估纳税,创建最佳投资组合等等。今天,客户将账户余额实时信息提取到追踪客户支出的应用程序,以及允许快速财务决策的工具等所有功能都是金融科技影响的例子。
作者 常国珍、吕鸿福 概述: 本文基于 R 语言,通过一个逻辑回归构建汽车贷款申请信用评级的案例,来为大家简单介绍信用风险模型及建模流程、R 语言实现、及中间需要注意的一些问题。包含的主要内容有以下几部分: ● 信用风险模型简述 ● 信用评分模型建模流程/框架 ● 基于 R 语言的汽车贷款申请信用评级案例实现(代码) 以下进入正文 Part 1:信用风险模型简述 说到信用风险模型,常见的有下面三种: n Application(申请评分)模型 Ø 通过客户申请时的信息,预测客户将来发生违约/逾期等的
“行动是所有成功的基本钥匙(Pablo Picasso)。”Gartner的分析价值 escalator识别四种不同类型的分析 -** 描述性,诊断性,预测性和规定性** - 按难度和商业价值排序。规定性分析是最复杂的级别,但提供最大的价值,是该escalator的顶部。通过回答关键问题,“我们如何实现这一目标?” ,规定性分析以行动形式提供了商业成功的秘诀。在信用风险领域,这个问题的答案可以在信用风险策略中找到。
一提到hadoop相信熟悉IT领域或者经常关注互联网新闻的朋友都应该很熟悉了,当然,这种熟悉可能也只是听着名字耳熟,但并不知道它具体是什么东西,或者用来做什么。这些都不重要,重要的是你知道有hadoop这么个东西就可以了。
链接:https://pan.baidu.com/s/1FVku6WefSBfhRwWILiaCrw
“这总是能够创造大图景的小碎片。” - 本系列前几篇文章介绍了信用评分工具包的关键要素,包括评分卡模型,评分策略,实施和监控。 通过将这些单件放在一起,我们开始构建企业决策管理(EDM)系统的更大图景。 但是,这对于执行完整的信用风险决策流程仍然不足。 制作完整的EDM图片需要将更多的拼图碎片放在一起,包括客户申请处理,内部和外部数据收集,策略规则,用于欺诈检测和风险管理的其他分析模型,优化,覆盖等。
本文是「信用风险建模 in Python」系列的第七篇,其实在之前的 Cufflinks 那篇已经埋下了信用风险的伏笔,
随着互联网渗透到生活中的各个角落,金融行业也似乎找到了与互联网的完美结合。互联网金融作为一个新的行业如今正在上升的势头上,因而也涌现了越来越多的P2P公司。但是作为一个互金公司来讲,风险永远是一个最重要的话题。那么如何利用机器学习以及大数据技术来降低风险呢?如何建立信用评分的模型呢?
近期,美国互联网金融公司ZestFinance受到国内互联网金融专业人士的热捧,其基于大数据的信用评估模型也越来越受到关注和效仿。本文结合美国的金融环境,对ZestFinance进行简要介绍,分析大数据征信产生的背景,剖析大数据征信技术,并全面客观地阐述了大数据征信技术对于中国互联网金融和征信业未来发展的借鉴意义。 ZestFinance简介 ZestFinance,原名ZestCash,是美国一家新兴的互联网金融公司,2009年9月成立于洛杉矶,由互联网巨头谷歌(Google)的前信息总监道格拉斯·梅瑞
《清华金融评论》授权转载,转载请征求版权方同意。 [官网]:http://www.thfr.com.cn 官方微信: thf-review(订阅号) thf_review(服务号) 文/刘新海、丁伟 本文编辑/《清华金融评论》贾红宇 近 期,美国互联网金融公司ZestFinance受到国内互联网金融专业人士的热捧,其基于大数据的信用评估模型也越来越受到关注和效仿。本文结合美国的金 融环境,对ZestFinance进行简要介绍,分析大数据征信产生的背景,剖析大数据征信技术,并全面客观地阐述了大数据征信技术对于
《清华金融评论》授权转载,转载请征求版权方同意。 [官网]:http://www.thfr.com.cn 官方微信: thf-review(订阅号) thf_review(服务号) 文/刘新海、丁伟 本文编辑/《清华金融评论》贾红宇 近期,美国互联网金融公司ZestFinance受到国内互联网金融专业人士的热捧,其基于大数据的信用评估模型也越来越受到关注和效仿。本文结合美国的金融环境,对ZestFinance进行简要介绍,分析大数据征信产生的背景,剖析大数据征信技术,并全面客观地阐述了大数据征信技术对于中
【前言】本文对于大数据征信做了透彻的分析,启示了国内存在非常好的投资机会,本文有很好的借鉴意义。希望本文作者联系我们。 本文编辑/《清华金融评论》贾红宇 近期,美国互联网金融公司ZestFinance受到国内互联网金融专业人士的热捧,其基于大数据的信用评估模型也越来越受到关注和效仿。本文结合美国的金融环境,对ZestFinance进行简要介绍,分析大数据征信产生的背景,剖析大数据征信技术,并全面客观地阐述了大数据征信技术对于中国互联网金融和征信业未来发展的借鉴意义。 ZestFinance简介 ZestFi
题图摄于北京北三环 (本文作者系 VMware 中国研发云原生实验室架构师,联邦学习 KubeFATE / FATE 开源项目维护者和贡献者。) 相关信息:招聘云原生工程师 需要加入KubeFATE开源项目讨论群的同学,请关注本公众号后回复 “kubefate” 即可。 联邦学习 人工智能的成功在很大程度上取决于用于训练有效预测模型数据的数量和质量。在企业内部,数据通常作为孤立的数据孤岛被储存在服务器中。同时,商业竞争或隐私保护法律的限制,企业之间不能直接共享数据。 基于这些原因,许多企业或部门的数据样本
数据猿导读 2003年以来我国经济的快速增长,国内信用消费环境的日趋成熟,我国信用卡市场近几年得到了爆炸性的大发展。根据中国银行业协会统计,信用卡欺诈损失排名前三类型为伪卡、虚假身份和互联网欺诈。 本
由于数据可用性和计算能力的快速增长,机器学习现在在技术和业务中发挥着至关重要的作用。机器学习对信用风险建模应用程序有重大贡献。 使用两个大型数据集,我们分析了一组机器学习方法在评估中小型借款人的信用风险方面的表现,其中穆迪分析RiskCalc模型作为基准模型。 我们发现机器学习模型提供了与RiskCalc模型相似的准确率。 但是,它们比RiskCalc模型更像是一个“黑匣子”,机器学习方法产生的结果有时难以解释。 机器学习方法可以更好地拟合解释变量与违约风险之间的非线性关系。 我们还发现,无论使用何种模型,使用更广泛的变量来预测默认值都会大大提高准确率。
合理的“现在购买,稍后付款”是许多金融和零售公司为了增加客户群而向其客户提供的诱人服务。 但是,双方在进行信贷决策时需要了解风险。 贷款人和客户都很重要,即客户能够履行信贷义务,并在贷款期限结束时偿还购买欠款。 贷款人需要能够评估每个客户的违约风险,从而贷款人可以决定向谁提供服务。
一、 风控模型的A卡、B卡、C卡 风控模型根据设定的y变量与可获得的x变量不同,大致可以分为三类:即A卡,B卡,C卡。今天就让我们聊聊三者的区别。 1、A卡(Application score card) A卡即申请评分模型,此类风控模型的目的在于预测申请时点(申请信用卡、申请贷款)未来一定时间内逾期的概率。Y变量的设定观察点为申请时点,定义为表现期内是否逾期。X变量一般只有客户填写的申请书信息,加上外部查询的数据与征信报告。 2、B卡(Behavior score card) B卡即行为评分模型,此类风控模型的目的在于预测使用时点(获得贷款、信用卡的使用期间)未来一定时间内逾期的概率。Y变量设定观察点为使用期间的某一时点,定义为表现期内是否逾期。由于行为评分模型的观察点在获得贷款或信用卡之后,这段时间内是可以获取到贷款或信用卡的使用还款行为数据的。另外使用过程中同样可以查询外部数据和征信报告的变化,这些行为数据衍生成x变量后,模型的效果会大大提升。 3、C卡(Collection score card) C卡即催收评分模型,此类风控模型的目的在于预测进入催收阶段后未来一定时间内还款的概率。Y变量设定的观察点为进入催收阶段的时点,定义为表现期内是否还款。催收评分模型有一个特有的数据,那就是催收的行为。比如打过几次电话,是否约定还款等等,这些催收行为x变量会影响催收模型的效果。
随着新年后资金面的舒缓,货币基金收益率开始了持续的回落,货币基金投资方式的必然调整也加剧了风险收益比的不确定性。更为严峻的是明显的竞争加剧,随着一些大型商业银行让夺利益推出类似产品,始终无法进入线下支付的支付宝和财付通并不占优势。 支付清算是现代金融服务的大门,但如果马云所勾画的“外行对于内行的颠覆性领导”仅仅停留在这个层面,未免有些言过其实了。令我们欣喜的是,在大门的里面,互联网金融同样给传统银行们上了一课。并且相比于坐在顺风船上的余额宝,从尘埃中走出的阿里小贷更具有那么一丝超现实的意
——————————————————————————————————————————
本文是「信用风险建模 in Python」系列的第五篇,其实在之前的 Cufflinks 那篇已经埋下了信用风险的伏笔,
近日,八家民营征信公司终于结束央行布置的大考。这就意味着,个人征信牌照将在近日颁发。一旦牌照正式颁发,就将打破央行征信中心一家独大的格局,我国征信行业也将呈现“百花齐放”,而各大征信机构推出的个人征信产品势必成为大众关注的新焦点。截至目前,阿里旗下的芝麻信用分、腾讯信用分、拉卡拉的“考拉分”、中诚信征信的“ 近日,八家民营征信公司终于结束央行布置的大考。这就意味着,个人征信牌照将在近日颁发。一旦牌照正式颁发,就将打破央行征信中心一家独大的格局,我国征信行业也将呈现“百花齐放”,而各大征信机构推出的个人征信产品势必成为大众关注的新焦点。截至目前,阿里旗下的芝麻信用分、腾讯信用分、拉卡拉的“考拉分”、中诚信征信的“万象分”、华道征信的“猪猪分”、前海征信的“好信度”等都已陆续上线或开始内测,并且开始尝试与机构合作测试。百家争鸣的征信行业是否能长驱直入,大步迈进,其应用市场前景会是乘风破浪抑或只是场“希望在田野上”的意淫,其中趋势尚待探究!
上一步中开发的信用风险评分卡模型,得到的是不同风险等级客户对应的分数,我们还需要将分数与违约概率和评级符号联系起来,以便差异化管理证券公司各面临信用风险敞口的客户,这就需要对证券公司各面临信用风险敞口
统计学、数据挖掘与机器学习是近年来经常一起出现的3个词语,尤其是数据挖掘与机器学习。有些人认为数据挖掘涵盖了机器学习,有些人认为机器学习应该包含数据挖掘,各种说法莫衷一是。实际上,由于近年来信息科学的高速发展,这些概念虽然有了一定的定义和解释,但是边界都相对模糊。如果从业务场景、算法应用的角度理解、学习他们,可以归类为数据科学——一门从数据中提炼知识及洞察趋势的科学。
这次事件发生在2009年左右的一个朋友聚会上,这是该地球长期以来最严重的金融危机。街上的乔意识到抵押支持证券(MBS),次级贷款和信贷危机等因素是他困境原因。 回到我们的聚会上,我遇到了一位知情和富有同情心的老年妇女,经过几分钟的闲聊之后,这个话题出现在我的生活中。 那时,我正在为孟买一家领先的抵押贷款机构开发一个信用记分卡项目。 当我开始解释我的工作细节时,她的表情从好奇转变为焦虑和痛苦。 最终,她打断了我的话 - 你为什么要这样做? 这不是所有混乱的原因吗? 我习惯了这种反应,必须纠正她的错误观念。
“以少胜多”是信用智能的主要理念,信用风险模型是实现这一目标的手段。 通过使用自动化流程并专注于关键信息,信用决策可以在几秒钟内完成 - 并且最终可以通过使决策流程更快而降低运营成本。 更少的问题和快速的信贷决策最终会提高客户满意度。 对于贷方来说,这意味着扩大客户群,吸纳风险较小的客户并增加利润。
金融风控是金融机构确保其业务健康运行、减少损失的重要手段。随着大数据和人工智能技术的发展,利用Python进行数据分析和机器学习可以为金融风控提供强有力的支持。本文将探讨Python在金融风控中的应用,详细介绍如何利用Python进行数据收集、预处理、机器学习建模和评估,以提升金融风控的准确性和效率。
版权声明:本文为博主原创文章,未经博主允许不得转载。
每每以为攀得众山小,可、每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~
资产交易智能扫描平台V1.0是由中诚信征信独立自主研发的资产智能扫描系统,在资产端,可以为主体信用不足但资产信用良好的资产方做到间接增信;在资金端,可以帮助投资者减少逆向选择的风险,增加优质的资产标的。 本产品为数据猿推出的“金融科技价值—数据驱动金融商业裂变”大型主题策划活动第一部分的文章/案例/产品征集部分;感谢 中诚信征信 的产品投递 1、产品名称 资产交易智能扫描平台(AXIS)V1.0 2、所属分类 金融科技·智能投顾 3、产品介绍 资产交易智能扫描平台(AXIS)V1.0是由中诚信征信独立自
信用风险计量体系包括主体评级模型和债项评级两部分。主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡、B卡、C卡和F卡;债项评级模型通常按照主体的融资用途,分为企业融资模型、现金流融资模型和项目融资模型等。 A卡,又称为申请者评级模型,主要应用于相关融资类业务中新用户的主体评级,适用于个人和机构融资主体。 B卡,又称为行为评级模型,主要应用于相关融资类业务中存量客户在续存期内的管理,如对客户可能出现的逾期、延期等行为进行预测,仅适用于个人融资主体。 C卡,又称为催收评级模型,主要应用于相关融资类业务中存量客户是否需要催收的预测管理,仅适用于个人融资主体。 F卡,又称为欺诈评级模型,主要应用于相关融资类业务中新客户可能存在的欺诈行为的预测管理,适用于个人和机构融资主体。 我们主要讨论主体评级模型的开发过程。
本文整理自《智能风控:原理、算法与工程实践》一书。详细梳理风控领域的基本概念,并将风控模型的使用场景分为8大板块,逐一解析机器学习在其中的应用。
本文是「信用风险建模 in Python」系列的第四篇,其实在之前的 Cufflinks 那篇已经埋下了信用风险的伏笔,
大数据文摘编译作品,欢迎个人转发朋友圈;其他机构、自媒体转载,务必后台留言,申请授权。 荐文专家招募: 如果你是业界专家, 如果你的工作和数据有关, 更重要的是,如果你能够找到好文章并愿意与读者分享
银行的问题总是循环往复地出现。打开任何一家新闻网站或者报纸,我们都能看到一篇又一篇关于银行问题的报道。欺诈、英国退欧引发的不良影响、各式各样的金融危机和违规行为、事实描写中掺杂着谣言与暗讽……好像银行总是在向公众粉饰自己真正在做的事情。 赢回顾客的心 为了赢回客户的信心,在数字化变革中维持自己的地位,各个银行(以及整个银行业)都必须认真考虑自己传统的业务模式和运营方法。一些银行已经开启了自己的数字化转型旅程,采用了新兴技术并利用现有的数据源来开发出更好的产品和服务。大数据和分析技术是其中的关键,但这
在消费金融领域,金融科技应用的其中一个重要方面便是风险管理。风险管理最主要是信用风险和欺诈风险,而其中的信用体系建设则是金融创新的重要环节之一。本文将参考招联消费金融的实际业务情况,介绍金融科技可以如何在消费金融风险管理中进行应用。
本文详细梳理风控领域的基本概念,并将风控模型的使用场景分为8大板块,逐一解析机器学习在其中的应用。
金融科技&大数据产品推荐: 数美金融风控—构建立体的全业务流程风控体系
来源|《产业与科技论坛》杂志2013年第10期 金融风险预警是金融数据挖掘中的一个重要研究方向,由于金融数据具有类型多样、关系复杂、数据动态性、数据量大等一般特征,此外还有高噪音、非 正态等特征。因此,金融风险预警更有挑战性。运用数据挖掘技术能够从海量的金融数据中发现隐藏在其背后的规律,有效地降低金融机构的运营风险。因此数据挖 掘在金融风险预警有着广阔的应用价值和市场前景。 金融风险管理 金融风险指任何可能导致企业或机构财物损失的风险,是企业未来收益的不确定性与波动性。按照金融风险产生根源可将金融风险分为静
上期介绍了征信的三巨头,这期主要为大家介绍三巨头背后的大佬——费埃哲公司。这个公司的FICO信用评分模型,至今是信用模型体系的标准,尽管很多新的硅谷公司采用引入外部数据的方式增加评分模型变量和维度的数量,但是核心的指标还是FICO的这几个。 模型评分技术属于个人征信技术序列的高端技术。美国三大信用局首选使用的都是Fair Isaac推出的FICO评分系统,该系统的基本思想是:把借款人的信用历史资料与数据库中全体借款人的信用习惯相比较,检查借款人的发展趋势跟经常违约、随意透支、甚至申
作为数据科学家,我的责任是设计和开发一个准确,有用和稳定的信用风险模型。我还需要确保其他数据科学家和业务分析师能够评估我的模型或重复相同的步骤并产生相同或类似的结果。
6月9日,腾讯研究院与TechWeb联合主办第12期“互联网前沿沙龙”,就腾讯如何在互联网金融大潮下布局展开探讨。微众银行副行长黄黎明称,将抛弃二八法则,做普惠金融,让每一个QQ、微信用户的零钱包
数据猿导读 随着互联网技术的不断发展,传统金融业务也从线下不断转移到线上,很多原先在线下的金融机构开始在互联网上开展经营活动。由于线上和线下的经营方式的差异,在对客户背景了解方面,互联网金融机构面临着
金融风险预警是金融数据挖掘中的一个重要研究方向,由于金融数据具有类型多样、关系复杂、数据动态性、数据量大等一般特征,此外还有高噪音、非 正态等特征。因此,金融风险预警更有挑战性。运用数据挖掘技术能够从海量的金融数据中发现隐藏在其背后的规律,有效地降低金融机构的运营风险。因此数据挖 掘在金融风险预警有着广阔的应用价值和市场前景。 一、金融风险管理 金融风险指任何可能导致企业或机构财物损失的风险,是企业未来收益的不确定性与波动性。按照金融风险产生根源可将金融风险分为静态与动态两类;按风险涉及 范围可分为微观金融
近年来,以第三方支付、P2P平台、众筹为代表的互联网金融模式引起了人们的广泛关注,该模式大量运用了搜索引擎、大数据、社交网络和云计算等技术,有效降低了市场信息不对称程度,大幅节省了信息处理的成本,让支付结算变得更便捷,达到了同资本市场直接融资、银行间接融资一样高的资源配置效率。但由于我国互联网金融出现的时间短,发展快,目前还没有形成完善的监控机制和信用体系,一旦现有互联网金融体系失控,将存在着巨大的风险。 首先是信用风险大。目前我国信用体系尚不完善,互联网金融的相关法律还有待配套,互联网金融违约成本较低,容
近年来,以第三方支付、P2P平台、众筹为代表的互联网金融模式引起了人们的广泛关注,该模式大量运用了搜索引擎、大数据、社交网络和云计算等技术,有效降低了市场信息不对称程度,大幅节省了信息处理的成本,让支付结算变得更便捷,达到了同资本市场直接融资、银行间接融资一样高的资源配置效率。但由于我国互联网金融出现的时间短,发展快,目前还没有形成完善的监控机制和信用体系,一旦现有互联网金融体系失控,将存在着巨大的风险。
领取专属 10元无门槛券
手把手带您无忧上云