克鲁斯卡尔算法是一种求解最小生成树问题的算法,其在电子文档管理系统中可以用于优化文档的管理和存储。
克鲁斯卡尔算法是一种用于解决最小生成树问题的贪心算法。在电脑监控软件中,可以将网络节点之间的连接关系抽象为一张图,然后使用克鲁斯卡尔算法来寻找最小生成树,即最小的连接所有节点的路径。
克鲁斯卡尔算法是一种用于解决最小生成树问题的贪心算法。在文档管理软件中,可以将网络节点之间的连接关系抽象为一张图,然后使用克鲁斯卡尔算法来寻找最小生成树,即最小的连接所有节点的路径。
在连通网中查找最小生成树的常用方法有两个,分别称为普里姆算法和克鲁斯卡尔算法。本节,我们给您讲解克鲁斯卡尔算法。
图论是研究图的数学理论和方法,其中图是由顶点集合及连接这些顶点的边集合组成的数学结构。图论在计算机科学、网络规划、生物信息学等众多领域都有重要应用。最小生成树(Minimum Spanning Tree,MST)是图论中一个经典问题,指在一个加权连通图中寻找一棵权值最小的生成树。克鲁斯卡尔(Kruskal)算法和普利姆(Prim)算法是解决最小生成树问题的两种著名算法。
最小生成树算法用于在一个连通加权无向图中找到一个生成树,使得生成树的所有边的权重之和最小。最小生成树问题在许多实际应用中都有重要的作用,例如网络设计、电力传输等。
若图中顶点数为n,则它的生成树含有n-1条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。
从边赋权图上选择一部分边得到一个子图,子图与原图具有共同的顶点,子图的边是原图的边的子集,且子图具有最小的开销(边的权值之和最小),符合这样要求的子图称作最小生成树,这类问题称作最小生成树问题。
我们在前面讲过的《克里姆算法》是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的。同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树也是很自然的
分析:MST,用最好理解的克鲁斯卡尔算法,其中 fin 是寻找这个点的父节点并进行路径压缩,merge 是把这两个点合并在一起,表示现在已经是相连接的了,克鲁斯卡尔算法要求需要先对边权来排序,所以首先用个结构体来存 起点 - 终点 - 权值,然后按权值从大到小排序,依次选取最小边权。
克鲁斯卡尔算法其实也是生成最小生成树的一种算法,和普里姆算法一样,解决同一类问题的。
Kruskal 算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。
树是由n个结点所构成的有限集合,当n=0时,称为空树 树的表示法有4种,分别为:文氏图表示法、凹入图表示法、广义表表示法以及树形表示法 结点的度是指结点所拥有子树的数目 二叉树是一种特殊的树,它的每个结点最多只有两颗子树,并且这两课子树也是二叉树 在一棵二叉树中,若其所有结点或叶结点,或左、右子树都非空,且所有叶结点都在同一层,则称这棵二叉树为满二叉树 在二叉树的第i层上至多有2i个结点(i≥0) 深度为h(h≥0)的二叉树上至多含2h-1个结点 对于任何一棵二叉树,若其叶结点的个数为n0,度为2的结点个数
图跟树一样,也是非线性结构,咋看起来有点复杂,其实它很简单。树具有层次关系,上层元素可以与下一个多个元素连接,但是只能和上层的一个元素连接。在图结构中,节点间的连接是任意的,任何一个元素都可以与其他元素连接。
基本思想:(1)构造一个只含n个顶点,边集为空的子图。若将图中各个顶点看成一棵树的根节点,则它是一个含有n棵树的森林。(2)从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图。也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之(3)依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。
之前学了用普里姆算法来求最小生成树的权值和,但是它的时间复杂度为O(|V2|),使用优先级队列优化后,可以优化为O(|E|log|V|)。
我们在图的定义中说过,带有权值的图就是网结构。一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边。所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小。综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree)。 找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法。 为了能够讲明白这个算法,我们先构造网图的邻接矩阵,如图7-6
定义: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。[1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。 Kruskal算法简述: 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的
图结构是数据元素呈多对多关系,就是任意两个元素存在这样的关系。如果用一个公式来表示就是由顶点集合和顶点之间的关系集合组成的一种数据结构。
阿汤哥将坐着SpaceX的载人龙飞船,飞越平流层,在远离地面402千米的外太空拍摄他的下一部好莱坞动作大片。
连通网的最小生成树算法: 1.普里姆算法——”加点法”。 假设N=(V,{E})是连通网,TE为最小生成树的边集合。 (1)初始U={u0}(u0∈V),TE=φ; (2)在所有u∈U, v∈V-U的边(u,v)中选择一条代价最小的边(u0,v0)并入集合TE,同时将v0并入U;(并修正U-V中各顶点到U的最短边信息) (3)重复步骤(2),直到U=V为止。 此时,TE中含有n-1条边,T=(V,{TE})为N的最小生成树。 普里姆算法是逐步向U中增加顶点的“加点法”。
Prim 算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中,算法从某一个顶点开始,逐渐长大覆盖整个连通网的所有顶点。
图是一种非线性数据结构,它由节点(也称为顶点)和连接这些节点的边组成。图可以用来表示各种关系和连接,比如网络拓扑、社交网络、地图等等。图的节点可以包含任意类型的数据,而边则表示节点之间的关系。图有两种常见的表示方法:邻接矩阵和邻接表。
用惯了克鲁斯卡尔,写个prim用了好久,不练不行啊 题目没什么好说的,就是最小生成树。 #include<cstdio> #include<cstring> #include<iostream> using namespace std; int graph[105][105]; int dis[105]; int vis[105]; int main() { int n; int i,j,k; while(cin>>n) { for(i=1;i<=n;i++) for(j=1;j<=n;
将一个具有 n 个顶点 e 条边的无向图存储在邻接矩阵中,则非零元素的个数是 2e。
首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林不产生回路,直至森林变成过一棵树为止
栋栋居住在一个繁华的C市中,然而,这个城市的道路大都年久失修。市长准备重新修一些路以方便市民,于是找到了栋栋,希望栋栋能帮助他。 C市中有n个比较重要的地点,市长希望这些地点重点被考虑。现在可以修一些道路来连接其中的一些地点,每条道路可以连接其中的两个地点。另外由于C市有一条河从中穿过,也可以在其中的一些地点建设码头,所有建了码头的地点可以通过河道连接。 栋栋拿到了允许建设的道路的信息,包括每条可以建设的道路的花费,以及哪些地点可以建设码头和建设码头的花费。 市长希望栋栋给出一个方案,使得任意两个地点能只通过新修的路或者河道互达,同时花费尽量小。
"村村通"是国家一个系统工程,其包涵有:公路、电力、生活和饮用水、电话网、有线电视网、互联网等等。
克鲁斯卡尔算法基本思想 普利姆算法和克鲁斯卡尔算法比较: 伪代码 数据结构设计 连通分量 图解 注意:将边数组按照权值大小排好序是算法的前提 最小生成树算法 完整代码 #inclu
无论是有向图还是无向图,主要的存储方式都有两种:邻接矩阵和邻接表。前者图的数据顺序存储结构,后者属于图的链接存储结构。
Jungle Roads Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tot
克鲁斯卡尔算法是求连通网的最小生成树的另一种方法。与普里姆算法不同,它的时间复杂度为O(eloge)(e为网中的边数),所以,适合于求边稀疏的网的最小生成树 。(百度百科) int n, m; // n是点数,m是边数 int p[N]; // 并查集的父节点数组 struct Edge // 存储边 { int a, b, w; bool operator< (const Edge &W)const { return w < W.
从2014年开始暴涨的A股市场再次牵动了亿万股民的心。到2015年8月,A股已经历了数天内暴涨暴跌的过山车式的变化。除了打听可能的内部消息和采用传统的技术分析外,对亿万普通股民而言,还有什么更好的办法可以提前预知某些行业甚至个股在某个事件和时间段内的走势,比如阿里巴巴和工商局对淘宝商品的争议对哪些股票会有影响?社保基金进入股市对哪些股票有影响这个答案在美国已经有了。这就是一款基于云计算的财经软件“沃伦”(以巴菲特命名),它背后的秘密就在于普通股民通过扫描世界市场上可以查询到的、直接或间接影响金融股票市场的一
【概要】名为“深度学习”的机器学习方法被广泛应用于人脸识别以及其他图像和语音识别应用程序,该方法在帮助天文学家分析星系图像及了解它们如何形成和演变方面展示了潜力。
这是船新“全栈”Deepfake软件,DeepFaceLab,已有超过14000颗星,还登上了GitHub热榜。
连通图:在无向图G中,若对任何两个顶点 v、u 都存在从v 到 u 的路径,则称G是连通图。
理解:就是在大学期间所有的课程,你只有先学完计算机基础,才能学更加高深的课程,从一个入度为0的点出发,找下一个一直到最后就是拓扑排序;
1、在对无向图进行遍历时,对于连通图,仅需从图中任一顶点出发,进行深度优先搜索或广度优先搜索,便可访问到图中所有顶点。
这怎么可能!后来我才知道,这是人家Deepfake的一个视频,把视频中人物的脸和声音替换了。
01 — 一个实际问题 要在n个城市之间铺设光缆,要求有2个: 这 n 个城市的任意两个之间都可以通信; 铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此要使铺设光缆的总费用最低。 如下所示
近年来,人们对深度造假(deepfaking)既着迷又担忧。这项技术可以替换视频中的人脸,并利用机器学习使最终生成效果看起来非常逼真。
应用图解决现实问题是我们使用图这种数据结构的原因所在。 最小生成树是图的应用中很常见的一个概念,一个图的最小生成树不是唯一的,但最小生成树的边的权值之和纵使唯一的。最小生成树的算法主要有Prim算法和Kruskal算法。这两种算法都是基于贪心算法策略(只考虑眼前的最佳利益,而不考虑整体的效率)。 拓扑排序是指由一个有向无环图的顶点组成的序列,此序列满足以下条件:
克鲁斯卡尔算法的基本思想是以边为主导地位,始终选择当前可用的最小边权的边(可以直接快排或者algorithm的sort)。每次选择边权最小的边链接两个端点是kruskal的规则,并实时判断两个点之间有没有间接联通。
题目描述: 某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。 输入: 测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。 当N为0时,输入结束,该用例不被处理。 输出: 对每个测试用例,在1行里输出最小的公路总长度。 样例输入: 3 1 2 1 1 3 2 2 3 4 4 1 2 1 1 3 4 1 4 1 2 3 3 2 4 2 3 4 5 0 样例输出: 3 5
例如,当我们教会一个模型「乔治·华盛顿是美国第一任总统」后,它能否自动回答「谁是美国第一任总统?」
一(基本概念) 1.图的定义:图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。 2.与线性表、树的比较: (1)线性表中我们把数据元素叫元素,树中将数据元素叫结点,在图中数据元素,我们则称之为顶点。 (2)线性表中可以没有数据元素,称为空表。树中可以没有结点,叫做空树。在图结构中,不允许没有顶点。 (3)线性表中,相邻的数据元素之间具有线性关系,树结构中,相邻两层的结点具有层次关系,而图中,任意两个顶点之间都可能有关系
领取专属 10元无门槛券
手把手带您无忧上云