首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

入口与服务之间的相互作用

是指在云计算环境中,用户通过入口与云服务进行交互和通信的过程。入口是指用户接入云计算平台的方式,可以是通过网页、移动应用、API等形式进行访问。服务则是指云计算平台提供的各种功能和资源,包括计算、存储、网络、数据库、安全等服务。

相互作用主要体现在以下几个方面:

  1. 用户认证与授权:用户通过入口进行登录认证,验证身份后才能使用云服务。云计算平台会对用户进行授权,控制其对不同服务的访问权限。
  2. 服务发现与选择:用户通过入口可以浏览和搜索云计算平台提供的各种服务。根据自身需求,用户可以选择适合的服务进行使用。
  3. 服务调用与数据传输:用户通过入口与云服务进行交互,调用相应的接口或功能。在调用过程中,可能涉及到数据的传输,包括上传、下载、存储等操作。
  4. 监控与管理:云计算平台可以通过入口提供监控和管理功能,用户可以查看自己使用的服务的状态、性能指标等信息,并进行相应的管理操作。
  5. 故障处理与支持:如果在使用过程中遇到故障或问题,用户可以通过入口向云计算平台寻求支持和解决方案。

入口与服务之间的相互作用对于用户来说非常重要,它决定了用户能否顺利地使用云计算平台提供的各种功能和资源。同时,云计算平台也需要提供稳定、安全、高效的入口,以确保用户能够方便地接入和使用云服务。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云入口:https://cloud.tencent.com/
  • 腾讯云认证与授权服务:https://cloud.tencent.com/product/cam
  • 腾讯云云服务器(CVM):https://cloud.tencent.com/product/cvm
  • 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos
  • 腾讯云数据库(TencentDB):https://cloud.tencent.com/product/cdb
  • 腾讯云安全产品:https://cloud.tencent.com/product/security
  • 腾讯云监控与管理服务:https://cloud.tencent.com/product/monitor
  • 腾讯云技术支持:https://cloud.tencent.com/support
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Research | 基于结构的深度图学习网络实现共价可靶半胱氨酸的预测

    本文介绍由浙江大学智能创新药物研究院侯廷军教授/潘培辰研究员团队和中南大学曹东升团队联合在综合期刊Research上发表的一篇文章。该文章提出一种新型的基于图表示的深度学习方法DeepCoSI用于共价药物结合位点(半胱氨酸)的预测。DeepCoSI网络由两个模块构成,分别是PocketGNNLayer和CysInteractLayer,前者用于对半胱氨酸所在口袋的环境进行表征,后者用于表征半胱氨酸与周围原子之间的非键相互作用,二者结合实现了半胱氨酸共价可靶性的预测。作者在两个外部测试集上验证了该模型区分共价可靶半胱氨酸与其他半胱氨酸的能力,均表现出较好的预测效果。

    03

    J. Chem. Inf. Model. | 基于序列和基于结构的蛋白质-配体相互作用机器学习方法

    开发新药既昂贵又耗时。准确预测药物和靶标之间的相互作用可能会改变药物的发现方式。基于机器学习的蛋白质-配体相互作用预测已经显示出巨大的潜力。本文重点对基于序列和基于结构的蛋白质-配体相互作用机器学习方法进行了总结。因此,本文首先概述了该领域应用的数据集,以及用于表示蛋白质和配体的各种方法。然后,利用基于序列和基于结构的分类标准对经典机器学习模型和深度学习模型进行分类和总结,用于蛋白质-配体相互作用的研究。此外,还提出了这些模型的评价方法和可解释性。此外,深入探讨了蛋白质-配体相互作用模型在药物研究中的各种应用。最后,讨论了该领域目前面临的挑战和未来的发展方向。

    01

    基于可解释的异质相互作用图神经网络的蛋白质-配体亲和力预测

    今天为大家介绍的是来自北京大学信息工程学院、AI4S平台中心主任陈语谦教授团队发表在人工智能旗舰期刊IEEE Transactions on Pattern Analysis and Machine Intelligence(IF=23.6)的论文,博士生杨梓铎为第一作者。该论文从归纳偏好的角度探讨了深度学习模型在蛋白质-配体亲和力(Protein-Ligand Binding Affinity, PLA)预测任务中的泛化能力和可解释性。归纳偏好是指在深度学习模型中为了更好地进行学习和泛化而引入的假设或偏好。归纳偏好通过限制模型的假设空间,使其在有限的数据上更容易找到合适的模式,从而提高模型的泛化性能。模型的泛化能力及可解释性,往往取决于所使用的归纳偏好在多大程度上能够准确描述待解决的任务。因此,在PLA预测任务中,所采用的归纳偏好应符合物理化学规则,以更好地描述蛋白质-配体间的相互作用,从而提高模型的泛化能力和可解释性。

    01

    NeurIPS 2021 | 通过动态图评分匹配预测分子构象

    从 2D 分子图中预测稳定的 3D 构象一直是计算化学中的一个长期挑战。而最近,机器学习方法取得了相比传统的实验和基于物理的模拟方法更优异的成绩。这些方法主要侧重于模拟分子图上相邻原子之间的局部相互作用,而忽略了非键合原子之间的长程相互作用。然而,这些未成键的原子在 3D 空间中可能彼此接近,模拟它们的相互作用对于准确确定分子构象至关重要,尤其是对于大分子和多分子复合物。在本文中,作者提出了一种称为动态图评分匹配 (DGSM) 的分子构象预测新方法,该方法通过在训练和推理过程中根据原子之间的空间接近度动态构建原子之间的图结构来对局部和远程相互作用进行建模。具体来说,DGSM根据动态构建的图,使用评分匹配方法直接估计原子坐标对数密度的梯度场。可以以端到端的方式有效地训练整个框架。多项实验表明,DGSM 的表现远超该领域一流水平,并且能够为更广泛的化学系统生成构象,例如蛋白质和多分子复合物。

    02

    Nat. Commun. | 多尺度相互作用网络鉴定疾病治疗机制

    今天给大家介绍斯坦福大学Jure Leskovec教授团队在Nature Communications上发表的一篇文章“Identification of disease treatment mechanisms through the multiscale interactome”。在这项工作中,作者构建了一个多尺度相互作用网络,该网络整合了疾病扰动蛋白、药物靶标和生物功能。基于该网络,作者开发了一种随机游走方法,捕获药物作用如何在蛋白质相互作用和生物功能的层次结构中传播。实验结果表明,多尺度相互作用网络可以预测药物疾病的治疗,鉴定与治疗有关的蛋白质和生物学功能,并预测可改变治疗功效和不良反应的基因。另外,仅通过蛋白质之间的相互作用不能对治疗机制进行解释,因为许多药物通过影响被疾病破坏的生物功能来治疗疾病,而不是直接作用于疾病蛋白。

    02

    IID | 组织特异性蛋白相互作用预测数据库

    在基因的相互作用分析预测方面,我们介绍过 [[STRING-蛋白相互作用数据库使用 | STRING]], [[BioGRID-蛋白,化学物质相互作用数据库 V4.4 | BioGRID]] 更加偏向于蛋白之间的相互作用预测。[[IncAct-基因相互作用分析数据库 | IncAct]] 是一个多组学的预测数据库。而 [[ConsensusPathDB-综合性相互作用分析数据库 | ConsensusPathDB]] 则是一个解释蛋白质-蛋白质、遗传、代谢、信号、基因调控和药物-靶标相互作用的数据库。但是对于基因相互作用而言,在不同的组织和疾病当中调控关系肯定也是不一样的。所以在进行相互作用预测的时候也要基于特定的环境来进行预测。今天就介绍一个基于特定环境预测相互作用关系的数据库:IID: http://iid.ophid.utoronto.ca/ 。

    01

    Nat. Commun. | 多尺度相互作用网络鉴定疾病治疗机制

    今天给大家介绍斯坦福大学Jure Leskovec教授团队在Nature Communications上发表的一篇文章“Identification of disease treatment mechanisms through the multiscale interactome”。在这项工作中,作者构建了一个多尺度相互作用网络,该网络整合了疾病扰动蛋白、药物靶标和生物功能。基于该网络,作者开发了一种随机游走方法,捕获药物作用如何在蛋白质相互作用和生物功能的层次结构中传播。实验结果表明,多尺度相互作用网络可以预测药物疾病的治疗,鉴定与治疗有关的蛋白质和生物学功能,并预测可改变治疗功效和不良反应的基因。另外,仅通过蛋白质之间的相互作用不能对治疗机制进行解释,因为许多药物通过影响被疾病破坏的生物功能来治疗疾病,而不是直接作用于疾病蛋白。

    03

    ICML2023 | 分子关系学习的条件图信息瓶颈

    今天为大家介绍的是来自韩国科学技术院的一篇分子关系学习的论文。分子关系学习是一种旨在学习分子对之间相互作用行为的方法,在分子科学领域引起了广泛关注,具有广泛的应用前景。最近,图神经网络在分子关系学习中取得了巨大成功,通过将分子建模为图结构,并考虑两个分子之间的原子级相互作用。尽管取得了成功,但现有的分子关系学习方法往往忽视了化学的本质,即化合物由多个子结构组成,这些子结构会引起不同的化学反应。在本文中,作者提出了一种新颖的关系学习框架,称为CGIB,通过检测其中的核心子图来预测一对图之间的相互作用行为。其主要思想是,在给定一对图的情况下,基于条件图信息瓶颈的原理,从一个图中找到一个子图,该子图包含关于当前任务的最小充分信息,并与配对图相互关联。作者认为其方法模拟了化学反应的本质,即分子的核心子结构取决于它与其他分子的相互作用。在各种具有实际数据集的任务上进行的大量实验表明,CGIB优于现有的基准方法。

    04

    由复合嵌入模型分解的单细胞成对关系

    本文介绍由不列颠哥伦比亚大学的Yongjin P. Park通讯预印在bioRxiv的研究成果:在多细胞生物中,细胞特性和功能是通过与周围其他细胞的相互作用来启动和完善的。在此,作者提出了一种名为SPURCE的可扩展机器学习方法,旨在系统地确定嵌入单细胞RNA序列数据中常见细胞间的通信模式。作者将该方法应用于研究肿瘤微环境,并整合了多个乳腺癌数据集,发现了七个经常观察到的相互作用特征和潜在的基因-基因相互作用网络。实验结果表明,通过不同的相互作用模式而不是已知标记基因的静态表达,可以更好地理解肿瘤异质性的一部分,尤其是同一亚型内的肿瘤异质性。

    02

    RIsearch2使用方法-预测RNA-RNA互作(sRNA的靶基因)

    非编码RNA经常和其它RNAs形成配对(双链)发挥其作用。这些RNA-RNA相互作用都是建立在碱基互补配对的基础上,两个RNA序列之间的高度互补是这种相互作用的强有力预测基础。RIsearch2是RNA-RNA相互作用预测工具,可以在给定的query和target序列之间形成互补定位。使用基于suffix arrays的seed-and-extend框架,RIsearch2可以发现RNA-RNA相互作用关系,这种发现可以基于基因组或转录组。类似之前的 RIsearch,RIsearch2也使用基于di-nucleotides to approximate nearest-neighbor energy parameters的修正Smith-Waterman-Gotoh algorithm算法。然而,不是执行整个序列比对,RIsearch2关注种子区域的完美互补并且向两端延伸。 用户定义的seed and extension constraints 使得 RIsearch2 可应用于所有类型的RNA-RNA相互作用预测。

    03

    KDD2021 | 用于预测蛋白质-配体结合亲和力的图神经网络

    本文介绍由中国科学技术大学和百度商业智能实验室等机构的研究人员合作发表于KDD 2021的研究成果:作者提出了一个基于图神经网络的模型SIGN(structure-aware interactive graph neural network),通过利用原子间的细粒度结构和相互作用信息来学习蛋白质-配体复合物的表征,从而更好地进行结合亲和力预测。SIGN由两部分组成:极坐标启发的图注意力层(PGAL)和成对相互作用池化(PiPool)。PGAL用来整合原子之间的距离和角度信息,进行三维空间结构建模。PiPool用来将蛋白质和配体之间的远程相互作用纳入模型中。在两个基准上的实验结果验证了SIGN的优越性。

    03

    CELL SYST|多目标神经网络框架预测化合物-蛋白相互作用和亲和力

    这次给大家介绍清华大学交叉信息研究院的曾坚阳教授课题组在Cell Systems上发表的论文“MONN: A Multi-objective Neural Network for Predicting Compound-Protein Interactions and Affinities”。分析化合物与蛋白质的相互作用 (Compound-Protein Interactions ,CPIs)在药物研发过程中起着至关重要的作用,迅速准确地预测作用位点和其间的亲和力有利于高效的药物研发。基于此问题,曾坚阳教授课题组引入深度学习,提出了一种预测化合物-蛋白相互作用和亲和力的多目标神经网络-MONN。作者在方法中引入了(i)捕获全局特征的超级节点、(ii)预测亲和力的GRU模块(Gate Recurrent Unit,门循环单元模型)、(iii)预测化合物-蛋白结合位点和判断其间的亲和力指标的多目标共享特征结构,使得其模型具有比现有模型更好的特征可解释性,有效捕捉了化合物与蛋白质的内在特征与联系,实现精确判断分子间的相互作用和亲和力。

    02
    领券