存储管理是操作系统中的一个重要功能,它负责分配、管理计算机系统中的存储资源。存储管理主要目的是提高存储空间的利用率和系统的运行效率。页式存储管理和段式存储管理是两种常见的存储管理方式。
A、一维 B、二维 C、三维 D、层次
存储管理是操作系统中一个非常关键的组成部分,涉及到数据的存储、检索和管理。操作系统需要有效地管理不同类型的存储资源,包括主存(RAM)、辅助存储(如硬盘驱动器和固态硬盘)以及在某些情况下的网络存储。这一过程确保系统的高效运行和资源的最优利用。
内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。
存储器是计算机系统中最重要的资源之一,任何程序和数据及各种控制用的数据结构都必须占有一定的存储空间,因此,存储管理直接影响系统性能。
一次性和驻留性严重地降低内存的利用率,显著地减少了系统吞吐量。 研究表明,程序在执行过程中呈现局部性原理。
操作系统的存储管理是指操作系统对计算机内存的管理和分配。内存是计算机中用于存储程序和数据的部分,因此它的管理对于计算机的运行和性能至关重要。
如果一个作业,需要全部装入内存后方能运行,会有什么情况? (1) 有的作业很大,其所要求的内存空间超过了内存总容量,作业不能全部被装入内存,致使该作业无法运行; (2) 有大量作业要求运行,但由于内存容量不足以容纳所有这些作业,只能将少数作业装入内存让它们先运行,而将其它大量的作业留在外存上等待
1.抽象,即给每个程序逻辑地址空间2.保护,不同程序的地址空间互相隔离,无法越界访问3.共享,对于一些公共函数库,可以只在内存中存一份,其它程序引用这一个库即可4.虚拟化,通过逻辑地址和虚拟内存,可以使用更大的地址空间
1、操作系统分类 批处理操作系统、分时操作系统(Unix)、实时操作系统、网络操作系统、分布式操作系统、微机操作系统(Linux、Windows、IOS等)、嵌入式操作系统。 2、操作系统的4个特征:并发性、共享性、虚拟性、不确定性。 3、操作系统的功能有:处理机管理、文件管理、存储管理、设备管理、作业管理。 处理机管理:也称进程管理。实质上是对处理机执行时间进行管理,采用多道程序等技术将CPU的时间真正合理地分配给每个任务。主要包括进程管理、进程同步、进程通信和进程调度。 文件管理:又称信息管理。主要包括
在前面总结了集中存储管理的刚上,要求作业的逻辑地址空间连续的存放主存储器
计算机系统中的存储器可以分为两类:内存储器(简称内存)和外存储器(简称外存)。处理器可以直接访问内存,但不能直接访问内存。CPU要通过启动相应的输入/输出设备后才能使内存和外存交换信息。
页式管理系统能有效地提高内存利用率,而分段存储管理能反映程序的逻辑结构并有利于段的共享。
-计算机系统中存储器一般分为内存储器和辅助存储器两级 -内存可以分成系统区和用户区两部分,系统区用来存储操作系统等系统软件,用户区用于分配给用户作业使用
包括程序装入等概念、交换技术、连续分配管理方式和非连续分配管理方式(分页、分段、段页式)。
(2)把程序计数器中存放的逻辑地址中的页号部分与控制寄存器中的页表长度比较,检查地址越界
☆采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化
操作系统—概述 管理系统的硬件、软件、数据资源 控制程序运行 人机之间的接口 应用软件与硬件之间的接口 进程管理 存储管理 文件管理 作业管理 设备管理 内容提要 进程管理 进程的状态 前趋图 信号
进程是对运行时程序的封装,是系统进行资源调度和分配的的基本单位,实现了操作系统的并发;
操作系统,包括嵌入式系统,通常利用存储管理单元MMU(Memory Management Unit)来提供内存保护机制,实现系统内核与应用程序,应用程序与应用程序之间的隔离。
内存管理 包括内存管理和虚拟内存管理 内存管理包括内存管理概念、交换与覆盖、连续分配管理方式和非连续分配管理方式(分页管理方式、分段管理方式、段页式管理方式)。 虚拟内存管理包括虚拟内存概念、请求分页管理方式、页面置换算法、页面分配策略、工作集和抖动。 3.1 内存管理的概念 内存管理(Memory Management)是操作系统设计中最重要和最复杂的内容之一。虽然计算机硬件一直在飞速发展,内存容量也在不断增长,但是仍然不可能将所有用户进程和系统所需要的全部程序和数据放入主存中,所以操作系统必须将内存空间
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/huyuyang6688/article/details/45151767
目录 ---- 一、基本 OS 概念: 单道批处理: 多道批处理: 分时系统: 实时系统: 二、操作系统的特征 并发:(前提共享)进程:系统中资源调度的单位 共享:null 虚拟:讲一个物理实体变为逻辑上的对应物 I/O CPU 内存 异步:进程执行不是一气呵成,而是走走停停 三、OS 的主要功能 处理机管理 存储器管理 设备管理 文件管理 OS 与 用户 间接口 四、前趋图 Pi -> Pj 先 Pi 再 Pj 五、程序顺序执行 特征: 六、程序并发执行 特征: 七、进程描述 PCB: 创建进程: 进程
操作系统(Operating System)是计算机系统中的核心软件之一,它是管理和控制计算机硬件和软件资源的软件系统。操作系统为用户提供了一个直接与计算机硬件进行交互的界面,同时也是应用程序和硬件之间的桥梁。
是计算机系统的一种系统软件,由它统一管理计算机系统的资源和控制程序的执行。
概念:OS 是核心系统软件,负责计算机系统、硬件资源的分配和使用;控制和协调并发活动;提供用户接口,使用户获得良好的工作环境
终于也是跨过了处理机管理,来到内存管理的内容了。目前基本存储管理这一章还差分页、分段以及段页三种管理方式没有学,之所以在学之前来写这一篇文章,主要是觉得这一章的内容过于零碎了,不易成逻辑又很容易忘掉,所以写这一篇来串一下已学的内容,在复习的基础上为学接下来的做一些铺垫。
今天给大家介绍一的是一款常见存储设备-Vsan的结构原理,相对而言技术性文字较多。VSAN是一种以vSphere内核作为基础开发出来的一款可以扩展使用的分布式存储架构。这款存储在vSphere集群主机中安硬盘及闪存构建出VSAN存储层,通过存储进行管理与控制,最终形成一个共享存储层。
常用的连续存储管理技术有固定分区存储管理和可变分区存储管理。 程序流程图中带有箭头的线段表示的是控制流。 若二叉树没有叶子结点,则为空二叉树。 带链栈的栈底指针是随栈的操作而动态变化的。 若带链队列中只有一个元素,则对头指针与队尾指针必定相同。 清晰第一,效率第二的论点已经成为当今主导的程序设计风格。 需求分析方法可以分为结构化分析方法和面向对象分析方法两大类。结构化分析方法的常用工具:数据流图(DFD图)、数据字典(DD)、判定表、判定树。 数据库应用系统包括数
非连续分配管理方式允许一个程序分散地装入到不相邻的内存分区,根据分区的大小是否固定分为分页式存储管理方式和分段式存储管理方式。分页存储管理方式中,又根据运行作业时是否要把作业的所有页面都装入内存才能运行分为基本分页式存储管理方式和请求分页式存储管理方式。
目前,Internet上的数据量爆炸性增长,数据总量呈指数上升,IDC数据中心存储系统必须具有足够的容量以适应不断增长的数据量。 IDC数据中心存储需求之1.大容量 目前,Internet上的数据量爆炸性增长,数据总量呈指数上升,IDC数据中心存储系统必须具有足够的容量以适应不断增长的数据量。存储系统不光要有大量的现实容量,还应该具有很好的可扩展性,能根据数据量的增长提供无缝的、不停机的容量扩充。 IDC数据中心存储需求之2.高性能 信息是具有时效性的,对于企业而言,及时获得所需数据非常关键;对于ICP而言,较高的访问速度是服务质量的重要指标。对于宽带应用,存储系统的带宽要与网络带宽相适应。因此,存储系统的响应速度和吞吐率是IDC数据中心存储系统应该密切关注的问题。从历史上看,计算机速度的瓶颈已逐渐从20世纪80年代的CPU和90年代的网络带宽转移到I/O子系统。因此,要提高IDC数据中心存储系统的整体性能,存储系统的性能提高是一个关键问题。 IDC数据中心存储需求之3.高可用性 IDC数据中心存储系统存储了企业大量的关键数据,因此,必须保证这些数据始终是安全可用的。在任何情况下,例如系统产生错误或遇到意外灾难,数据都不能丢失。系统应具有快速故障恢复能力,保证应用系统永不停机(7×24小时不间断工作),数据始终保持完整性和一致性。 IDC数据中心存储需求之4.可管理性 IDC数据中心存储系统保存着大量的业务数据。对这些数据的管理不光体现在应用层的管理,还体现在存储系统的管理。这主要表现在集中的自动化管理,如数据按特定规则的备份、对系统性能和流量等特性的监测、存储设备的负载平衡等。 以上IDC数据中心存储系统特点需要用相应的技术进行保障。某些技术能在几个方面对存储系统做出贡献,特别是存储系统的管理渗透到整个系统的各个方面,我们很难把它从系统中单独分离出来。但作为讨论方便,我们仍从系统要求出发分别对上述特点进行讨论。 针对存储容量问题,现在最成熟的还是基于磁盘、光盘和磁带的存储技术。这些技术在很长时间内仍将占有主流地位。现在磁盘、磁带的存储容量每年增长1倍,基本上能适应数据的增长。在IDC数据中心存储系统,存储任务是由以上述技术为基础构成的存储系统来完成的,主要有磁盘阵列、磁带库和光盘库。新出现的SAN(存储区域网)、NAS(附网存储)和集群存储等新的网络存储结构为存储系统容量和性能的扩展提供了有力的支持。另外,数据共享技术在一定的条件下可以缓解容量问题。 对于高性能方面,在单个磁盘读写性能提升空间有限的前提下,并行I/O技术和Cache技术成为主角。并行I/O技术目前在国际上正被广泛研究,像磁盘阵列技术、多通道技术等已得到广泛应用。目前研究的重点是大规模并行I/O和多级存储技术,它们主要是从存储系统的整体结构入手,利用SAN和集群等技术进一步提高存储系统的整体性能。对于Cache技术,针对不同的应用(如数据库中事务处理方式、WWW方式等)采用合适的数据预取策略正被广泛应用。此外,采用光纤通道技术作为新一代存储接口已成为趋势,促进了存储系统性能的提高。 对于数据可用性问题可从多个层面进行讨论。磁盘阵列是一种最基本的高可用存储技术。在IDC数据中心存储系统,应选择双电源、双控制器、没有单点故障的磁盘阵列。对于系统层面,集群、SAN等技术也可以大大促进系统可用性的提高。另外,Standby技术、系统整体冗余、远程实时备份和灾难恢复等技术也是高可用性存储所不可缺少的技术。 我们看到,冗余磁盘阵列、存储区域网和集群技术对存储系统的各个方面都有较好的贡献,将这几种技术紧密联系在一起就构成了满足IDC数据中心存储系统要求的存储系统。对于IDC数据中心存储系统而言,这几种技术必然会得到进一步的重视。 存储管理贯穿于存储系统的各个方面。数据共享、无缝扩展、实时备份、容错技术、系统监控、流量控制、远程数据备份、灾难恢复等无一不需要相应的软件进行保障。对于IDC数据中心存储系统,高效、稳定、安全的存储软件是必不可少的,而这一点过去往往被人们忽视。现在,人们已开始认识到存储管理的重要性。著名IT企业,如IBM、Compaq、HP等,均推出了自己的存储管理软件,专业的存储软件公司,如VERTIAS公司,在存储软件方面更有全线的存储管理软件可供选择。 IDC数据中心存储系统作为一个整体,需要大量相互融合的技术进行保障。一方面要发展更好的技术,另一方面要把各种技术结合成为一个整体,提供稳定、安全、高效的整体解决方案。
从单道批处理系统对CPU的利用情况可看出,作业运行过程中若发生IO请求,高速的CPU要等待低速的I/O操作完成,导致CPU资源利用率和系统吞吐量降低。
它采用 集中式存储管理 应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化。
存储器是计算机系统的重要资源之一。任何程序和数据以及各种控制用的数据结构都必须占用一定的存储空间,因此,存储管理直接影响系统性能。
操作系统是直接控制和管理计算机硬件、软件资源,合理地对各类作业进行调度,以方便用户使用的程序集合。
设计文件系统时应尽量减少访问磁盘的次数,以提高文件系统的性能。下列各项措施中,哪些可以提高文件系统的性能?
操作系统是管理计算机硬件和软件资源的计算机程序,管理配置内存、决定资源供需顺序、控制输入输出设备等。操作系统提供让用户和系统交互的操作界面。操作系统的种类是多种多样的,不局限于计算机,从手机到超级计算机,操作系统可简单也可复杂,在不同的设备上,操作系统可向用户呈现多种操作。因为我们不可能直接操作计算机硬件,而且设备种类繁多,需要一个统一的界面,因此有了操作系统,操作系统的简易性使得更多人能使用计算机。常见的操作系统有:Windows、Linux、MacOS、Android等,总结一句话就是:操作系统是管理硬件、提供用户交互的软件系统。
用户程序的地址空间被划分成若干固定大小的区域,称为“页”,相应地,内存空间分成若干个物理块,页和块的大小相等。可将用户程序的任一页放在内存的任一块中,实现了离散分配。
我将计算机开机后,假设操作系统消耗了 2G 的运行内存,我打开了某开发工具消耗了 5G 运行内存,又打开了某通讯工具消耗了 1G 运行内存,如下图所示。
编辑手记:RAC是Oracle最重要的高可用架构之一,具有扩展性良好、实现负载均衡等多维度的优势,Oracle RAC提供了相应的集群软件和存储管理软件,今天我们一起来学习在12.2中,Oracle在RAC集群资源的管理上有哪些重要的更新。 注:文章内容来自官方文档翻译。若需要了解更多,请查阅官方文档。 1 Oracle Flex ASM Disk Group Quota Management(Oracle 弹性 ASM磁盘组配额管理) Oracle 弹性 ASM磁盘组提供了一组强大的功能,可以增加在使用A
本文从计算机存储简介、存储设备介绍、软件定义存储(SDS)、常见的Kubernetes CSI存储插件介绍、如何平衡成本和存储性能等方面对计算机存储进行详细分析;本文最后还通过图形展示了存储在计算机体系结构中的重要作用。希望对您有所帮助!
在分页存储管理中,一个程序的逻辑地址空间被划分成若干个大小相等的区域,每个区域称为页或页面,并且程序地址空间中所有的页从 0 开始顺序编号。相应地,内存物理地址空间也按同样方式划分成与页大小相同的区域,每个区域称为物理块或页框,与页一样内存空间中的所有物理块也从 0 开始顺序编号。在为程序分配内存时,允许以页为单位将程序的各个页,分别装入内存中相邻或不相邻的物理块中。由于程序的最后一页往往不能装满分配给它的物理块,于是会有一定程度的内存空间浪费,这部分被浪费的内存空间称为页内碎片。
页表指出逻辑地址中的页号与所占主存物理块号的对应关系。页式存储管理在用动态重定位方式装入作业时,要利用页表做地址转换工作。
存储器的基础知识 首先,一般的存储器我们就会认为它包含着三部分: 寄存器 速度最快,但是造价高 主存储器 速度次之,被通俗称为内存 外存 速度最慢,用于存储文件数据,因为上边两种一旦断电,数据就会丢失。这个用来做持久化存储的。 因此,我们的存储器往往是使用三层结构的。 程序的装入和链接 在操作系统的角度而言,我们面对存储器就是面对程序的装入和连接 一般地,用户程序向要在系统上运行,就要经历下面几个步骤: 编译:对用户源程序进行遍历,形成若干个目标模块 链接:将目标模块以及他们所需要的库函数链接在一起,形成完
早起批处理系统只能一次处理一个任务,多道程序设计使得批处理系统可以一次处理多个任务。对多道程序的管理是操作系统的重要功能。
在连续分配中,一个进程不可被分割,只能整体放入一块连续的内存空间中;但在基本分页存储管理中,允许把一个进程按照固定大小 X 分割为多个部分,同时把内存也按照固定大小 X 分割为多个部分,并把前者对应地放到后者中(不要求连续存放)。通常来说,一个进程的最后一部分会小于 X,这部分若放到内存的某个 X 空间中,则仍然会产生碎片(这种碎片称为页内碎片),要让这种碎片尽可能小,X 也必须尽可能小。
并发执行的程序在运行的时候共享系统的资源,一个进程会受到其他进行的制约,为了协调,达到资源共享,就需要实现进程的互斥和同步。
1.OS是管理系统资源、控制程序执行、改善人机界面、提供各种服务,并合理组织计算机工作流程和为用户方便有效地使用计算机提供良好的运行环境的一种软件系统。
领取专属 10元无门槛券
手把手带您无忧上云