首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据清洗

数据清洗 一般义的清洗 特殊字符 在数据清洗中最常见的就是特殊字符,一般的特殊字符可以直接替换掉如地址码中最常见的’#’,像这种直接替换为号即可。...全角半角转换 数据由于来源或采集问题,可能会有全角的数字或字母,而一般的系统都不会允许有这种问题,所以需要将这些问题在清洗步骤中处理掉。...错/别字处理 错别字问题在数据清洗中是难度比较大的一部分工作,在这部分工作中,首先要找出错别字,并建立错别字对应的正确字符串的对应关系,然后使用程序批量的完成替换 空值检测 空值是要在数据清洗中过滤掉的...清洗中常用的工具与技术 如果要做地理数据的相关处理,那么FME是应该首选工具,当然,清洗也属于数据处理的范畴。...综上,在数据清洗中,能够掌握FME与Python基本就够了,如果你还会点正则,那就基本上是完美了!就是这样,各位,节日快乐!晚安!

1.7K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    7步搞定数据清洗-Python数据清洗指南

    数据清洗是整个数据分析过程的第一步,就像做一道菜之前需要先择菜洗菜一样。数据分析师经常需要花费大量的时间来清洗数据或者转换格式,这个工作甚至会占整个数据分析流程的80%左右的时间。...在这篇文章中,我尝试简单地归纳一下用Python来做数据清洗的7步过程,供大家参考。...# 可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。 DataDF.isnull().sum().sort_values(ascending=False) ?...可能会存在有标点符号掺杂/大小写不一致/空格重复出现等问题 6)消灭空值:CustomerID、Description、Country和UnitPrice都出现了NaN值,需要去掉 于是下面就开始后续的数据清洗

    4.5K20

    数据清洗经验

    断点清洗 如果你有大量的原始数据需要清洗,要一次清洗完可能需要很久,有可能是5分钟,10分钟,一小时,甚至是几天。实际当中,经常在洗到一半的时候突然崩溃了。...假设你有100万条记录,你的清洗程序在第325392条因为某些异常崩溃了,你修改了这个bug,然后重新清洗,这样的话,程序就得重新从1清洗到325391,这是在做无用功。其实可以这么做: 1....让你的清洗程序打印出来当前在清洗第几条,这样,如果崩溃了,你就能知道处理到哪条时崩溃了。 2. 让你的程序支持在断点处开始清洗,这样当重新清洗时,你就能从325392直接开始。...当所有记录都清洗结束之后,再重新清洗一遍,因为后来修改bug后的代码可能会对之前的记录的清洗带来一些变化,两次清洗保证万无一失。但总的来说,设置断点能够节省很多时间,尤其是当你在debug的时候。...把清洗日志打印到文件中 当运行清洗程序时,把清洗日志和错误提示都打印到文件当中,这样就能轻松的使用文本编辑器来查看他们了。

    1.3K40

    网络流量统计技术

    的高速发展为用户提供了更高的带宽,支持的业务和应用日渐增多,传统流量统计如SNMP、端口镜像等,由于统计流量方式不灵活或是需要投资专用服务器成本高等原因,无法满足对网络进行更细致的管理,需要一种新技术来更好的支持网络流量统计...l 网络规划:NetStream可以为网络管理工具提供关键信息,比如各个AS域之间的网络流量情况,以便优化网络设计和规划,实现以最小的网络运营成本达到最佳的网络性能和可靠性。...通过特定的采样技术获取网络设备上的流量转发统计并实时地通过sFlow数据报文发送到Collector以供Collector进行分析,通过生成流量视图或者报表的形式,帮助网络管理员更加有效地管理整个站点(通常是企业级站点)的网络流量...2、原理: 图8-1 sFlow报文格式 sFlow的两种采样 sFlow Agent提供了两种采样方式供用户从不同的角度分析网络流量状况,分别为Flow...图8-2 sFlow系统示意图 4、网络流量的统计技术之一,相较于netstream,更显轻量。

    2.5K10

    爬虫系列:数据清洗

    数据清洗 到目前为止,我们都没有处理过那些样式不规范的数据,要么使用的是样式规范的数据源,要么就是放弃样式不符合我们预期的数据。但在网络数据采集中,你通常无法对采集的数据样式太挑剔。...下面我们就通过工具和技术,通过改变代码的编写方式,帮你从源头控制数据凌乱的问题,并且对已经入库的数据经行清洗。 编写代码清洗数据 和编写异常处理代码一样,你应该学会编写预防型代码来处理意外情况。...我们可以定制一些规则让数据变得更规范: 剔除单字符的“单词”,除非这个单词是“a”或“i”; 剔除维基百科的引用标记(方括号包裹的数字,入1) 剔除标点符号 现在“清洗任务”列表变得越来越长,让我们把规则都移出来...@[\]^_`{|}~ 在循环体中用item.strip(string.punctuation)对内容中的所有单词进行清洗,单词两端的任何标点符号都会被去掉,但带连字符的单词(连字符在单词内部)任然会保留...本期关于数据清洗就是如上内容,在接下来的内容中我会讲解数据标准化,以及存储的数据如何清洗

    1.7K10

    网络流量分析netflow

    前言   随着宽带互联网在中国的迅速发展,全国各大电信运营商的网络规模都在不断扩张,网络结构日渐复杂,网络业务日趋丰富,网络流量高速增长。...上述两种被普遍采用的网络流量监测系统都有着明显的技术局限性。   ...下面对网络流量和流向分析系统中最常用的NetFlow V5数据输出的数据包格式作一简单介绍。  图1为NetFlow V5输出数据包的包头格式。...NetFlow不需要其他硬件流量设备的支持,开启和关闭都非常方便,因此在国外已有很多运营商用它来收集流量,服务于网络规划、设计和优化等领域。...通常情况下,运营商网络结构包括核心层和边缘层两个层次,网络流量通过边缘层的路由器汇接进入核心层,由核心层的路由器进行转接。

    2.9K20

    -Pandas 清洗“脏”数据(一)

    庆幸的是,Pandas 提供功能强大的类库,不管数据处于什么状态,他可以帮助我们通过清洗数据,排序数据,最后得到清晰明了的数据。...下面我们通过使用 Pandas 提供的功能来清洗“脏”数据。 准备工作 首先,第一次使用 Pandas 之前,我们需要安装 Pandas。...data.rename(columns = {‘title_year’:’release_date’, ‘movie_facebook_likes’:’facebook_likes’}) 保存结果 我们完成数据清洗之后...有很多方式可能造成数据集变“脏”或被破坏: 用户环境的不同、 所使用语言的差异 用户输入的差别 在这里,我介绍了 Python 用 Pandas 清洗数据最一般的方式。...更多关于数据清洗的内容可以关注知乎上的专栏“数据清洗” 知乎数据清洗- Pandas 清洗“脏”数据(一)

    3.8K70
    领券