首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

MindSpore自定义模型损失函数

而损失函数的另一个重要性在于会影响到优化函数的收敛性,如果损失函数的指数定义的太高,稍有参数波动就导致结果的巨大波动的话,那么训练和优化就很难收敛。...一般我们常用的损失函数是MSE(均方误差)和MAE(平均标准差)等。那么这里我们尝试在MindSpore中去自定义一些损失函数,可用于适应自己的特殊场景。...自定义损失函数 由于python语言的灵活性,使得我们可以继承基本类和函数,只要使用mindspore允许范围内的算子,就可以实现自定义的损失函数。...总结概要 在不同的训练场景中,我们时常需要使用不同的损失函数来衡量一个模型的计算结果的优劣,本文重点介绍了在MindSpore中如何去自定义一个损失函数。...基于MindSpore中的Loss类,我们可以通过继承该类后,再重写construct函数和get_loss函数来实现全面自定义的损失函数形式与内容。

93920

【Pytorch】自定义模型、自定义损失函数及模型删除修改层的常用操作

如上所述,加载的模型应该与保存的模型具有相同的体系结构,因此我们不能使用列表方法。 我们需要在上面添加层。在 PyTorch 中执行此操作的方法很简单——我们只需要创建一个自定义模型!...这给我们留下了任何管道中的 2 个重要组件 - 加载数据和训练部分。我们来看看训练部分。这一步最重要的两个组成部分是优化器和损失函数。...损失函数量化了我们现有模型与我们想要达到的目标之间的距离,优化器决定如何更新参数,以便我们可以最大限度地减少损失。 有时,我们需要定义自己的损失函数。...这里有一些事情要知道 自定义损失函数也是使用自定义类定义的。它们像自定义模型一样继承自 torch.nn.Module。 通常,我们需要更改其中一项输入的维度。这可以使用 view() 函数来完成。...这里我展示了一个名为 Regress_Loss 的自定义损失,它将 2 种输入 x 和 y 作为输入。然后将 x 重塑为与 y 相似,最后通过计算重塑后的 x 和 y 之间的 L2 差来返回损失。

93630
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器学习模型中的损失函数loss function

    概述 在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式: J...,主要的形式有: 0-1损失 Log损失 Hinge损失 指数损失 感知损失 2. 0-1损失函数 在分类问题中,可以使用函数的正负号来进行模式判断,函数值本身的大小并不是很重要,0-1损失函数比较的是预测值...0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。 3. Log损失函数 3.1....Log损失 Log损失是0-1损失函数的一种代理函数,Log损失的具体形式如下: l...Log损失与0-1损失的关系可见下图。 4. Hinge损失函数 4.1.

    1.1K20

    深度学习中损失函数和激活函数的选择

    前言 本篇博客的目的是根据业务目标,为大家提供关于在构建神经网络时,如何根据需求选择合适的最终层激活函数和损失函数的指导和建议。...最终激活函数 Sigmoid——这将产生一个介于0和1之间的值,我们可以推断出模型对示例属于该类别的信心程度。 损失函数 二元交叉熵——交叉熵量化了两个概率分布之间的差异。...最终激活函数 Softmax——这将为每个输出产生介于0和1之间的值,这些值的总和为1。 所以这可以被推断为概率分布。 损失函数 交叉熵——交叉熵量化了两个概率分布之间的差异。...最终激活函数 Sigmoid——这将产生一个介于0和1之间的值,我们可以推断出模型对于某个实例属于该类别的信心程度。 损失函数 二元交叉熵——交叉熵量化了两个概率分布之间的差异。...总结 以下表格总结了上述信息,以便您能够快速找到适用于您用例的最终层激活函数和损失函数。 参考: 人工智能学习指南

    15410

    交叉熵损失函数的概念和理解

    公式 定义 在信息论中,若一个符号字符串中的每个字符的出现概率 已知,则可用香农熵估计该字符串中每个符号 编码所需的平均最小位数....除了数学表达式相似以外,完全可以将这里的熵和其热力学概念联系起来....在对符号进行编码时,如果假设了其他的概率 而非真实概率 ,则对每个符号所需的编码的长度就会更大.这正是交叉熵所发挥作用的时候....作为一个损失函数假设p为所期望的输出和概率分布("编码"),其中实际值 有100%,而其他任何值为0,将q作为由模型计算得到的输出,请牢记,sigmoid函数的输出是一个概率值....有这样一个定理:当p=q时,交叉熵去的最小值.因此可以利用交叉熵比较一个分布与另一个分布的吻合情况.交叉熵越接近与熵,q便是针对p更好的逼近,实际上,模型的输出与期望输出越接近,交叉熵也会越小,这正是损失函数所需要的

    1.1K20

    从损失函数优化文本分类模型的指标

    问题 在我们的舆情系统里,客户标注了一批文章倾向性的数据,为了降低人工成本,客户希望使用模型来实现自动的标注。...但是客户标注的这批数据是极其不平衡的,绝大部分数据都是同一个分类,而且数据是多人标注的,数据质量其实比较一般,同事在这批数据上验证了一下,指标如下: ​ 训练时使用的损失函数是交叉熵,过程有使用过采样之类的...关注损失函数 训练是有目标的,就是让loss值最小化,但是loss值最小和各个类别的准确都比较好却不是等价的,因为类别之间太不平衡了。loss最小,应该是倾向于整体准确率最好。...显然是可以的,准确率概率值,用1减去它就行,可以用原来的loss加上这个值,构成新的loss,这样和类别的准确率就作为模型训练的目标之一了。 同事测试反馈效果还不错。 进一步 更进一步考虑: 1....关于损失函数的理解 损失函数并不是一成不变的,很多时候应该从场景的目标出来,设计出跟目标直接相关的损失函数,往往能收到好的效果。 机器学习里经常出现的距离函数往往也是这样的。

    35010

    VBA自定义函数:满足多个条件并返回多个值的查找

    标签:VBA,自定义函数 如下图1所示,查找列A中值为“figs”的行,并返回该行中内容为“X”的单元格对应的该列中首行单元格的内容,即图1中红框所示的内容。...图1 在单元格B20中输入公式: =lookupFruitColours(A20,"X",A2:J17,A1:J1) 这个公式使用了自定义函数lookupFruitColours。...这个自定义函数的代码如下: Option Compare Text Function lookupFruitColours(ByVal lookup_value As String, _ ByVal...lookupFruitColours = Left(result_set, Len(result_set) - 1) End Function 其中,参数lookup_value代表要在指定区域第一列中查找的值...,参数intersect_value代表行列交叉处的值,参数lookup_vector代表指定的查找区域,参数result_vector代表返回值所在的区域。

    77910

    深度学习的多个loss如何平衡 & 有哪些「魔改」损失函数,曾经拯救了你的深度学习模型?

    这篇文章整理自我的知乎回答(id: Hanson),分别对深度学习中的多个loss如何平衡 以及 有哪些「魔改」损失函数,曾经拯救了你的深度学习模型 这两个问题进行了解答。 1....深度学习的多个loss如何平衡? 1.1 mtcnn 对于多任务学习而言,它每一组loss之间的数量级和学习难度并不一样,寻找平衡点是个很难的事情。我举两个我在实际应用中碰到的问题。...box的回归并不是特别受关键点影响,大部分情况box和landmarks是正向促进的,影响程度可以看做和score是一致的,box的精度即便下降了5%,它还是能框得住目标,因此不用太在意。...改进后训练达到相同的精度和loss,SSD用时10小时,改进后的方法耗时仅需10-20min。...对齐后的结果 是不是能好很多。 2. 有哪些「魔改」损失函数,曾经拯救了你的深度学习模型? 我在做缺陷检测时候对比了一些loss的性能,其实确实是那句话,适合自己的才是最好的。

    6.6K31

    玩转机器学习:基于多损失函数的模型融合

    基于多损失函数的模型融合 原理其实很简单,利用不同损失函数的特性,结合使用不同损失函数分别训练多个模型,将多个训练得到的模型结果进行加权平均或分段预测。...这里我们使用的是MAE 和 MSE: 平均绝对差值(MAE) 绝对误差的平均值,通常用来衡量模型预测结果对标准结果的接近程度。 ?...来源见水印 可以看出,MSE对误差进行了平方,这就会放大误差之间的差距,也即加大对异常值的惩罚,在高分段和低分段能获得更好的表现,使用MAE的模型在中分段能获得更好的表现。...因此可以结合使用以MSE和MAE为损失函数的模型,分段进行预测。 注:单模型而言,如果数据的异常值对于业务是有用的,我们希望考虑到这些异常值,那么就用MSE。...如果我们相应异常值只是一些无用的数据噪音,那就用MAE。 模型融合实例 书中使用lightgbm建模并进行融合,只列出关键代码。 ?

    1.7K30

    深度神经网络(DNN)损失函数和激活函数的选择

    实际上DNN可以使用的损失函数和激活函数不少。这些损失函数和激活函数如何选择呢?下面我们就对DNN损失函数和激活函数的选择做一个总结。 1....使用对数似然损失函数和softmax激活函数进行DNN分类输出     在前面我们讲的所有DNN相关知识中,我们都假设输出是连续可导的值。...可见损失函数只和真实类别对应的输出有关,这样假设真实类别是第i类,则其他不属于第i类序号对应的神经元的梯度导数直接为0。...DNN损失函数和激活函数小结     上面我们对DNN损失函数和激活函数做了详细的讨论,重要的点有:1)如果使用sigmoid激活函数,则交叉熵损失函数一般肯定比均方差损失函数好。...2)如果是DNN用于分类,则一般在输出层使用softmax激活函数和对数似然损失函数。3)ReLU激活函数对梯度消失问题有一定程度的解决,尤其是在CNN模型中。

    1.1K10

    应对AI模型中的“Loss Function NaN”错误:损失函数调试

    在这篇博客中,我们将深入探讨如何解决AI模型训练过程中常见的“Loss Function NaN”错误。通过调试损失函数和优化模型参数,您可以显著提升模型训练的稳定性和性能。...本文将包含详细的理论分析、实用代码示例和常见问题解答,帮助您在实际项目中应用这些技巧。 引言 在深度学习模型训练过程中,损失函数(Loss Function)是衡量模型预测与实际值之间差距的关键指标。...修改损失函数:使用自定义损失函数,避免NaN值。...小结 损失函数NaN错误是深度学习训练过程中常见的问题。通过检查数据、调整学习率和修改损失函数,可以有效解决这一问题,确保模型训练的稳定性和效果。...未来展望 未来,随着深度学习技术的发展,更多的自动化调试工具和方法将被提出,进一步提升模型训练的效率和稳定性。

    15610

    激活函数Relu对精度和损失的影响研究

    1 问题 在学习深度学习的过程中,欲探究激活函数Relu对精度和损失的影响。 2 方法 测试设置激活函数时和没有设置激活函数时网络的性能。...、输出以及测试网络的性能(不经过任何训练的网络) net=MyNet().to(device)#to()GPU上运行该网络 #网络训练模型 #X, 真实的标签y, 网络预测的标签y_hat...optimizer=torch.optim.SGD(net.parameters(),lr=0.15) #损失函数 #衡量yy与y_hat之前的差异 loss_fn=nn.CrossEntropyLoss...: 有激活函数时结果如图所示: 3 结语 通过实验发现,在未使用激活函数时,通过不断地训练模型,模型的准确率和损失率都时比较稳定地上升和下降,但是在上升和下降地过程中会出现抖动地情况,但是使用激活函数之后...,模型的准确率和损失率就会上升和下降的非常平滑,更有利于实验的进行,以及对模型行为的预测。

    22530

    Tensorflow入门教程(二十二)——分割模型中的损失函数

    在之前的篇章中我分享过2D和3D分割模型的例子,里面有不同的分割网络Unet,VNet等。今天我就从损失函数这个方向给大家分享一下在分割模型中常用的一些函数。...1、dice_loss 我在之前的文章中用的损失函数一直都是dice_loss,在这篇文章中《V-Net: Fully Convolutional Neural Networks for Volumetric...2、tversky_loss 分割任务中的主要挑战之一是数据的不平衡性,例如癌症区域和非癌症区域相差很大,所以有一些文章为了解决数据不平衡性问题,提出了一些改进的损失函数,在这篇文章中《Tversky...我用tensorflow复现了上面三种损失函数的2D版本和3D版本,具体实现我已经分享到github上: https://github.com/junqiangchen/Image-Segmentation-Loss-Functions...欢迎大家可以分享其他分割模型损失函数,让我们一起学习交流。

    1.1K30

    编程怎么入门_损失函数的基本概念和原理

    本篇文章完全是一个铺垫,是为了后面文章提供理论基础,没有这些基础,谈论Socket编程和后续的具体功能实现,都是纸上谈兵,所以还请很少接触Socket编程的看官耐心看完这篇文章,相信对各位有好处。...,举几个例子,如HTTP是基于TCP实现的,ping和tracerouter是基于ICMP实现的,libpcap(用wireshare做过网络抓包的可能更熟悉)则是直接读取了网络接口层的数据,但是他们的实现...再来了解一下TCP和UDP,两者最大的区别在于,TCP是可靠的,也就是说,我们通过TCP发送的数据,网络协议栈会保证数据可靠的传输到对端,而UDP是不可靠的,如果出现丢包,协议栈不会做任何处理,可靠性的保证交由应用层处理...地址以及端口号,还有可以处理的最大字符数,之后,基于给定的ip和port,创建Socket,开始接收数据,收到数据后,转化为大写,返回给客户端。...,获知服务器的IP以及端口号,然后向该服务器发送字符串,然后接收服务器的响应,输出响应,响应结果如下所示: 收到:AAAAAABBBBBBCCCCCC 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人

    21220

    深入理解机器学习中的:目标函数,损失函数和代价函数「建议收藏」

    :计算的是一个样本的误差 代价函数:是整个训练集上所有样本误差的平均 目标函数:代价函数 + 正则化项 实际应用: 损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,举例说明:...我们给定x,这三个函数都会输出一个f(X),这个输出的f(X)与真实值Y可能是相同的,也可能是不同的,为了表示我们拟合的好坏,我们就用一个函数来度量拟合的程度。...这个函数就称为损失函数(loss function),或者叫代价函数(cost function)。 损失函数越小,就代表模型拟合的越好。...风险函数是损失函数的期望,这是由于我们输入输出的(X,Y)遵循一个联合分布,但是这个联合分布是未知的,所以无法计算。...这个时候就定义了一个函数J(f),这个函数专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有L1, L2范数。

    1.5K11

    sigmoid和tanh求导的最终结果,以及Sigmoid函数与损失函数求导

    2、sigmoid函数求导 ​ sigmoid导数具体的推导过程如下: 3、神经网络损失函数求导 ​ 神经网络的损失函数可以理解为是一个多级的复合函数,求导使用链式法则。 ​ ​...先来说一下常规求导的过程: ​ 这是一个简单的复合函数,如上图所示,c是a的函数,e是c的函数,如果我们用链式求导法则,分别对a和b求导,那么就是求出e对c的导数,c对a的导数,乘起来,对b求导则是求出...实际上BP(Backpropagation,反向传播算法),就是如此计算的,如果现在有一个三层的神经网络,有输入、一个隐藏层,输出层,我们对损失函数求权重的偏导数,它是一个复杂的复合函数,如果先对第一层的权重求偏导...第二层是隐藏层,激励通过特征值与区中相乘得到,然后取sigmoid函数变换,得到 ,未变换之前的记为 : ​ 在上面,我们最后加上了偏置项; ​ 接下来第三层是输出层: ​ 因为是输出层了,所以不需要再往下计算...然后,我们根据损失函数,写出损失函数的公式,在这里,只有一个输入,一个输出,所以损失函数写出来较为简单: ​ 在这里,m=1; ​ 说明: 实际上就是所有的权重的平方和,一般不会将和偏置项相乘的那个放进来

    6.9K80

    sigmoid和tanh求导的最终结果,以及Sigmoid函数与损失函数求导

    2、sigmoid函数求导 ​ sigmoid导数具体的推导过程如下: ? 3、神经网络损失函数求导 ​ 神经网络的损失函数可以理解为是一个多级的复合函数,求导使用链式法则。 ​ ? ​...这是一个简单的复合函数,如上图所示,c是a的函数,e是c的函数,如果我们用链式求导法则,分别对a和b求导,那么就是求出e对c的导数,c对a的导数,乘起来,对b求导则是求出e分别对c和d的导数,分别求c和...实际上BP(Backpropagation,反向传播算法),就是如此计算的,如果现在有一个三层的神经网络,有输入、一个隐藏层,输出层,我们对损失函数求权重的偏导数,它是一个复杂的复合函数,如果先对第一层的权重求偏导...然后,我们根据损失函数,写出损失函数的公式,在这里,只有一个输入,一个输出,所以损失函数写出来较为简单: ​ 在这里,m=1; ? ​ 说明: ?...实际上就是所有的权重的平方和,一般不会将和偏置项相乘的那个放进来;这个项很简单,暂时先不管它,后面不暂时不写这一项(这个是正则化)。 ? ? ? ?

    1.4K30

    【损失函数合集】Yann Lecun的Contrastive Loss 和 Google的Triplet Loss

    前言 昨天在介绍Center Loss的时候提到了这两个损失函数,今天就来介绍一下。...昨天我们了解到用SoftMax损失函数训练出的分类模型在Mnist测试集上就表现出“类间”区分边界不大的问题了,使得遭受对抗样本攻击的时候很容易就分类失败。...然后孪生网络一般就使用这里要介绍的Contrastive Loss作为损失函数,这种损失函数可以有效的处理这种网络中的成对数据的关系。 Contrastive Loss的公式如下: ?...而下面的Figure1展示的就是损失函数和样本特征的欧氏距离之间的关系,其中红色虚线表示相似样本的损失值,而蓝色实线表示的是不相似样本的损失值。 ?...Triplet Loss即三元组损失,我们详细来介绍一下。 Triplet Loss定义:最小化锚点和具有相同身份的正样本之间的距离,最小化锚点和具有不同身份的负样本之间的距离。

    2.4K10
    领券