首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NumPy之:多维数组中的线性代数

    简介 本文将会以图表的形式为大家讲解怎么在NumPy中进行多维数据的线性代数运算。 多维数据的线性代数通常被用在图像处理的图形变换中,本文将会使用一个图像的例子进行说明。...对于一个二维的图像来说,其分辨率可以看做是一个X*Y的矩阵,矩阵中的每个点的颜色都可以用(R,G,B)来表示。 有了上面的知识,我们就可以对图像的颜色进行分解了。...使用s对图像进行重构,需要将s还原成80 * 170 的矩阵: # 重建 import numpy as np Sigma = np.zeros((80, 170)) for i in range(80...@ Sigma @ Vt print(reconstructed.shape) plt.imshow(np.transpose(reconstructed, (1, 2, 0))) 当然,也可以选择前面的...本文已收录于 http://www.flydean.com/08-python-numpy-linear-algebra/ 最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

    1.7K30

    NumPy之:多维数组中的线性代数

    简介 本文将会以图表的形式为大家讲解怎么在NumPy中进行多维数据的线性代数运算。 多维数据的线性代数通常被用在图像处理的图形变换中,本文将会使用一个图像的例子进行说明。...对于一个二维的图像来说,其分辨率可以看做是一个X*Y的矩阵,矩阵中的每个点的颜色都可以用(R,G,B)来表示。 有了上面的知识,我们就可以对图像的颜色进行分解了。...使用s对图像进行重构,需要将s还原成80 * 170 的矩阵: # 重建 import numpy as np Sigma = np.zeros((80, 170)) for i in range(80...当然,也可以选择前面的K个特征值对图像进行压缩: approx_img = U @ Sigma[..., :k] @ Vt[..., :k, :] print(approx_img.shape) plt.imshow...本文已收录于 http://www.flydean.com/08-python-numpy-linear-algebra/

    1.7K40

    多维数据库概述之一---多维数据库的选择

    MDD的信息是以数组形式存放的,所以它可以在不影响索引的情况下更新数据。因此MDD非常适合于读写应用。 1.1....Express Server能够存储和管理多维数组,或者通过一种只需很少、甚至不需索引的复杂的多维高速缓存方案,提供直接面向关系的分析。...Oracle Express Server不仅支持多维模型,而且具有分析、预测、建模,以及对进行假设分析的能力。具有用于数学、财务、统计和时间序列管理等方面的内置功能。...是一个多维数据库服务器,可以创建“块存储”或“聚合存储”数据库,前者用于需要进行读/写访问的小型、高密度的数据集,后者用于具有很多维度和只读访问的稀疏、销售分析类型的应用程序。...所以暂时选择以下三种策略。

    4.2K20

    numpy中的索引技巧详解

    numpy中数组的索引非常灵活且强大,基本的操作技巧有以下几种 1....下标索引 通过每一轴的下标来访问元素,一次获取一个元素,用法如下 >>> import numpy >>> a = numpy.arange(6) >>> a array([0, 1, 2, 3, 4,...切片索引 切片索引通过切片的方式来提取子集,适用于数组内连续元素的提取,用法如下 >>> a = numpy.arange(6) >>> a array([0, 1, 2, 3, 4, 5]) # 一维数组用法和...花式索引 花式索引,本质是根据下标的集合,即索引数组来提取子集,与切片的区别在于,花式索引可以提取非连续的元素,用法如下 >>> a = numpy.arange(6) >>> a array([0,...# 第一个数组中的元素为列对应的下标 >>> a[numpy.ix_([0,1], [0,1])] array([[0, 1], [3, 4]]) 需要注意,利用花式索引从二维数组中提取当行或者单列的数据

    2K20

    Numpy中的索引与排序

    花哨的索引探索花哨的索引组合索引Example:选择随机点利用花哨索引修改值数组排序Numpy中的快速排序:np.sort,np.argsort部分排序:分割 花哨的索引 花哨的索引和前面那些简单的索引非常类似...# 利用花哨索引随机选择20个不重复的索引值 indices = np.random.choice(X.shape[], , replace=False) indices array([, , , ,...数组排序 例如, 一个简单的选择排序重复寻找列表中的最小值, 并且不断交换直到列表是有序的。...可以在 Python 中仅用几行代码来实现: # 用Python代码实现选择排序 import numpy as np def selection_sort(x): for i in range...与排序类似, 也可以沿着多维数组任意的轴进行分隔: # 与排序类似也可以沿着多维数组的任意轴进行分割 np.partition(X, , axis=) array([[ 0, 1, 2, 3],

    2.5K20

    初探Numpy中的花式索引

    前言 Numpy中对数组索引的方式有很多(为了方便介绍文中的数组如不加特殊说明指的都是Numpy中的ndarry数组),比如: 基本索引:通过单个整数值来索引数组 import numpy as np...a 什么是花式索引? 花式索引(Fancy indexing)是指利用整数数组进行索引,这里的整数数组可以是Numpy数组也可以是Python中列表、元组等可迭代类型。...下面先来利用一维数组来举例,花式索引利用整数数组来索引,那么就先来一个整数数组,这里的整数数组可以为Numpy数组以及Python中可迭代类型,这里为了方便使用Python中的list列表。...; 由于二维数组的两个轴都被索引了,所以此时的下标和上面的稍有不同,对于[0, 2]和[1, 2]两个整数数组来说,相应的下标先在第一个整数数组中选择0,然后再在第二个整数数组中选择1,即为arr2d[...0][0]等价arr2d[0, 0],同理对于第二个索引来说先在第一个整数数组中选择2,然后再第二个整数数组中选择2,即为arr2d[2][2]等价arr2d[2, 2]。

    2.3K20

    mysql前缀索引的索引选择性

    大家好,又见面了,我是你们的朋友全栈君。 mysql前缀索引的索引选择性 一....基础概念 在mysql中建立前缀索引的意义在于相对于整列建立索引,前缀索引仅仅是选择该列的部分字符作为索引,减少索引的字符可以节约索引空间,从而提高索引效率,但这样也会降低索引的选择性 关于索引的选择性...索引的选择性越高则查询效率越高,因为选择性高的索引可以让MySQL在查找时过滤掉更多的行。...选择性为1的索引叫唯一索引,这是最好的索引选择性,性能也是最好的 建立合理前缀索引的诀窍在于要选择足够长的前缀以保证较高的选择性,同时又不能太长(以便节约空间)。...④ 真正的难点在于:要选择足够长的前缀以保证较高的选择性,同时又不能太长, 前缀的长度应该使前缀索引的选择性接近索引整个列,即前缀的基数应该接近于完整列的基数 发布者:全栈程序员栈长,转载请注明出处

    69620

    Faiss: 选择合适的索引Index

    然而,这种灵活性也带来了一个问题:如何知道哪种索引大小最适合我们的用例?应选择哪种索引?是否只需要一个索引?...本文将探讨几种关键索引(Flat、LSH、HNSW和IVF)的优缺点,并指导如何选择适合用例的索引,以及每个索引中参数的影响。...Faiss索引的选择 Faiss 提供了多种索引类型,这些类型可以相互组合,以构建多层级的索引结构。在选择索引时,需考虑不同的因素,如搜索速度、质量或索引内存的需求。...“NSW”部分是由于这些图中的顶点都具有到图中所有其他顶点的非常短的平均路径长度 — 尽管它们并没有直接连接。...对于具有更高维度的大型数据集 — HNSW图是可以使用的表现得最好的索引之一。

    95410

    使用Numpy验证Google GRE的随机选择算法

    最近在读《SRE Google运维解密》第20章提到数据中心内部服务器的负载均衡方法,文章对比了几种负载均衡的算法,其中随机选择算法,非常适合用 Numpy 模拟并且用 Matplotlib 画图,下面是我的代码...: # 使用 numpy 模拟 GRE 中的随机选择算法,并使用 pyplot绘图 import numpy as np from numpy import random r = random.randint...,然后再统计每台服务器被选中的次数,并对次数排序并画图,然后就能够出来书中的图的样式。...我按照三个参数模拟了一下,感觉随机选择算法不管子集的大小如何,负载的情况都不是很均衡。子集小的情况下,能够偏出平均值50%,子集大的时候(75%)仍能偏出平均值15%左右。 ? ? ?...参考资料: 1、SRE Google 运维解密 2、Python中plt.hist参数详解 3、Matplotlib 4、彻底解决matplotlib中文乱码问题 5、numpy中的随机数模块

    85120

    【NumPy 数组副本 vs 视图、NumPy 数组形状、重塑、迭代】

    NumPy 数组形状 数组的形状是每个维中元素的数量。 获取数组的形状 NumPy 数组有一个名为 shape 的属性,该属性返回一个元组,每个索引具有相应元素的数量。...每个索引处的整数表明相应维度拥有的元素数量。 上例中的索引 4,我们的值为 4,因此可以说第 5 个 ( 4 + 1 th) 维度有 4 个元素。 NumPy 数组重塑 重塑意味着更改数组的形状。...我们可以将 8 元素 1D 数组重塑为 2 行 2D 数组中的 4 个元素,但是我们不能将其重塑为 3 元素 3 行 2D 数组,因为这将需要 3x3 = 9 个元素。...实例 尝试将具有 8 个元素的 1D 数组转换为每个维度中具有 3 个元素的 2D 数组(将产生错误): import numpy as np arr = np.array([1, 2, 3, 4,...这些功能属于 numpy 的中级至高级部分。 NumPy数组迭代 迭代意味着逐一遍历元素。 当我们在 numpy 中处理多维数组时,可以使用 python 的基本 for 循环来完成此操作。

    15710

    CBO如何选择相同cost的索引

    ix_sel_with_filters: 0.000100     Cost: 2.00  Resp: 2.00  Degree: 1 杨长老提到dbsnake曾经写过,检索了下,有一篇文章介绍, 《CBO对于Cost值相同的索引的选择...》 http://www.dbsnake.net/handle-equally-costed-indexes.html 文章总结来讲, 对于Oracle 10gR2及其以上的版本,CBO对于Cost值相同的索引的选择实际上会这样...如果Cost值相同的索引的叶子块数量不同,则Oracle会选择叶子块数量较少的那个索引; 2. 如果Cost值相同的索引的叶子块数量相同,则Oracle会选择索引名的字母顺序在前面的那个索引。...先验证(2)的观点,从上面10053可以看出,两个索引的cost相同,叶子块数相同,此时CBO选择的是IDX_Z_01,因为他的名字,排在IDX_Z_02前面, Best:: AccessPath:...Cost: 2.00  Degree: 1  Resp: 2.00  Card: 0.00  Bytes: 0 总结: 对于cost相同的索引,10gR2及以上的版本,Oracle CBO还是有方法选择

    92060

    高效数据处理的Python Numpy条件索引方法

    与传统的按位置索引不同,条件索引基于逻辑表达式选择数组中的元素。条件索引在数据筛选、过滤、替换等操作中极为常用。 条件索引的基本应用 假设有一个数组,想要从中提取所有大于某个值的元素。...这种组合条件可以根据不同需求灵活地选择数组中的元素。 条件索引的高级应用 除了基本的筛选操作,Numpy的条件索引还可以用于修改数组中的元素。...这种基于条件的元素修改在数据清洗和处理过程中非常有用。 条件赋值和np.where np.where是Numpy中的一个强大函数,基于条件来进行选择操作。...条件索引与多维数组 条件索引不仅适用于一维数组,还可以应用于多维数组。对于多维数组,可以使用条件索引提取满足条件的行、列或子数组。...使用条件arr_2d > 5提取了数组中所有大于5的元素。结果是一个一维数组,其中包含了满足条件的所有元素。 基于条件索引选择行或列 有时,需要基于某些条件来选择多维数组中的特定行或列。

    12810

    Numpy实战全集

    Numpy实战全集 0.导语1.Numpy基本操作1.1 列表转为矩阵1.2 维度1.3 行数和列数()1.4 元素个数2.Numpy创建array2.1 一维array创建2.1 多维array创建...一维矩阵运算3.2 多维矩阵运算3.3 基本计算4.Numpy索引与切片5.Numpy array合并5.1 数组合并5.2 数组转置为矩阵5.3 多个矩阵合并5.4 合并例子26.Numpy array...中,想要求出矩阵中各个元素的乘方需要依赖双星符号 **,以二次方举例,即: c = b**2 print(c) # [0 1 4 9] # Numpy中具有很多的数学函数工具 c = np.sin(a)...尾部维度: 将多维数组右对齐!能够上下对应,这部分就是尾部,而对应的头部维度,则是维度大的数组比维度小的数组多出来的维度!...9.2 np.argmax() 函数原型为:numpy.argmax(a, axis=None, out=None). 函数表示返回沿轴axis最大值的索引。

    2.2K20

    NumPy 1.26 中文官方指南(一)

    基础知识 NumPy 的主要对象是同质的多维数组。它是一张元素表(通常是数字),全部是相同类型的,通过非负整数的元组索引。在 NumPy 中,维度被称为轴。...使用布尔数组进行索引 当我们使用(整数)索引数组对数组进行索引时,我们提供要选择的索引列表。使用布尔索引时,方法不同;我们明确选择数组中的哪些项和哪些项不要。...基础知识 NumPy 的主要对象是同构的多维数组。它是一个元素表(通常是数字),所有元素的类型相同,由非负整数的元组索引。在 NumPy 中,维度称为 轴。...使用布尔数组进行索引 当我们用(整数)索引数组索引数组时,我们提供了要选择的索引列表。布尔索引的方法不同;我们明确选择要选择哪些数组项和哪些不选择。...使用布尔数组进行索引 当我们用 (整数) 索引数组索引数组时,我们提供了要选择的索引列表。对于布尔索引,方法是不同的;我们明确地选择我们想要的数组项和我们不想要的数组项。

    1.1K10

    索引的数据结构及算法原理--索引选择性与前缀索引

    至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。 另一种不建议建索引的情况是索引的选择性较低。...所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值: Index Selectivity = Cardinality / #T 显然选择性的取值范围为...(0, 1],选择性越高的索引价值越大,这是由B+Tree的性质决定的。...有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销...下面以employees.employees表为例介绍前缀索引的选择和使用。

    49110

    在毕设中学习02——numpy多维数组的切片,形态变化,维度交换

    —过滤信息 多维矩阵的维度顺序变换 多维矩阵的切片 多维矩阵的形态变化 构建三维数组,并按照指定维度输出 import numpy as np # a=np.arange(0,60,1,dtype=np.floating...,在坐标轴上是反方向输出的) [0, -1, -2, -3, -4, -5, -6, -7, -8, -9] 生成指定范围,指定步长的一组数 a=np.arange(1,20,2) import numpy...5 7 9 11 13 15 17 19] [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] 注意这个np.arange()方法的返回值是numpy.ndarray...#输出 (10,) [[ 1 3 5 7 9] [11 13 15 17 19]] 多维数组切片——过滤信息 import numpy as np #按照表达式j*10+i,生成6*6矩阵..., 128, 1) 有时候需要跨通道获取数据比如我只要1,3,5,6四个通道的数据可以这么写 d=a[,[0,2,4,5],] d的形状就变成了(7352, 4, 128, 1) 多维矩阵的形态变化 a.reshape

    68030
    领券