后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中名声最响的就是 vlookup 函数,当然在 Excel 函数公式中用于查找的函数家族也挺大...今天就来看看 pandas 中任何实现 Excel 中的多列批量 vlookup 的效果 案例1:简单匹配 一天,你收到一份数据源表如下: - 每个人每个城市的销售额数据 接着,你需要把下图的表格从数据源表匹配过来...: - 根据名字与上方的城市名字,从表1中匹配数据 对于 Excel 来说,这需求很简单,一个 vlookup 即可解决: - 由于刚好目标表的城市顺序与源表顺序一样,因此可以这么解决 那么我们来看看...pandas 中怎么实现: - 行6、7,由于现在需要姓名匹配,我们把2份数据的姓名列设置为行索引 - 行9,简单调用 update 方法,表示 df_tg 按照 df_src 更新值 由于 pandas...> 多层索引及其应用,以及更多关于数据更新的高级应用,请关注我的 pandas 专栏 总结
后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中名声最响的就是 vlookup 函数,当然在 Excel 函数公式中用于查找的函数家族也挺大...今天就来看看 pandas 中任何实现 Excel 中的多列批量 vlookup 的效果 案例1:简单匹配 一天,你收到一份数据源表如下: - 每个人每个城市的销售额数据 接着,你需要把下图的表格从数据源表匹配过来...: - 根据名字与上方的城市名字,从表1中匹配数据 对于 Excel 来说,这需求很简单,一个 vlookup 即可解决: - 由于刚好目标表的城市顺序与源表顺序一样,因此可以这么解决 那么我们来看看...pandas 中怎么实现: - 行6、7,由于现在需要姓名匹配,我们把2份数据的姓名列设置为行索引 - 行9,简单调用 update 方法,表示 df_tg 按照 df_src 更新值 由于 pandas...> 多层索引及其应用,以及更多关于数据更新的高级应用,请关注我的 pandas 专栏 总结 本文重点: - DataFrame.update 是更新值的好工具 - 构造好行列索引,是关键
标签:Excel公式练习 这个问题似乎很常见,如下图1所示,有两个区域,你能够使用公式判断它们是否包含相同的值吗?...图1 注:示例数据来自于chandoo.org。 如果两个区域包含的值相同,则公式返回TRUE,否则返回FALSE。...最简洁的公式是: =AND(COUNTIF(range1,range2),COUNTIF(range2,range1)) 这是一个数组公式,输入完后要按Ctrl+Shift+Enter组合键。...看到了吧,同样的问题,各种函数各显神通,都可以得到想要的结果。仔细体味一下上述各个公式,相信对于编写公式的水平会大有裨益。 当然,或许你有更好的公式?欢迎留言。...注:有兴趣的朋友可以到知识星球完美Excel社群下载本文配套示例工作簿。
Pandas merge用法解析(用Excel的数据为例子) 【知识点】 语法: 参数如下: left: 拼接的左侧DataFrame对象 right: 拼接的右侧DataFrame对象 on: 要加入的列或索引级别名称...(df1,df2,how='inner') 如果是用 how=’inner’,是取交集 则可以看到【2019010 鸠摩智】与【2019011 丁春秋】两个数据丢失了 vlookup_data=...pd.merge(df1,df2,how='outer') 如果是用how=’outer’是取并集 可以看到两个10,一个是【2019010 鸠摩智】一个是【2019011 丁春秋】总共是11个数据...,没有数所的用NaN填空 vlookup_data=pd.merge(df1,df2,how='left') 左边数据DataFrame的【2019010 鸠摩智】保留,右边的【2019011 丁春秋...】丢失了 vlookup_data=pd.merge(df1,df2,how='right') 这个就可以自己解理了 ======================= Pandas比excel的vlookup
Pandas的style用法在大多数教程中见的比较少,它主要是用来美化DataFrame和Series的输出,能够更加直观地显示数据结果。...首先导入相应的包和数据集 import pandas as pd import numpy as np data = data = pd.read_excel('....突出显示特殊值 style还可以突出显示数据中的特殊值,比如高亮显示数据中的最大(highlight_max)、最小值(highlight_min)。...#求每个月的销售总金额,并分别用红色、绿色高亮显示最大值和最小值 monthly_sales = data.resample('M',on='日期')['金额'].agg(['sum']).reset_index...sparklines的功能还是挺Cool挺实用的,更具体的用法可以去看看sparklines的文档。 参考资料:https://pbpython.com/styling-pandas.html
注意:本文讨论的是合并具有公共ID但不同数据字段的Excel文件。 Excel文件 下面是一些模拟的电子表格,这些数据集非常小,仅用于演示。...我可以使用VLOOKUP查找每个“保险ID”的值,并将所有数据字段合并到一个电子表格中!...,df_2称为右数据框架,将df_2与df_1合并基本上意味着我们将两个数据帧框架的所有数据合并在一起,使用一个公共的唯一键匹配df_2到df_1中的每条记录。...df_1和df_2中的记录数相同,因此我们可以进行一对一的匹配,并将两个数据框架合并在一起。...有两个“保单现金值”列,保单现金值_x(来自df_2)和保单现金值_y(来自df_3)。当有两个相同的列时,默认情况下,pandas将为列名的末尾指定后缀“_x”、“_y”等。
11、在Excel中复制自定义的筛选器 ? 12、合并两个过滤器的计算结果 ? 13、包含Excel中的功能 ? 14、从DataFrame获取特定的值 ?...四、统计功能 1、描述性统计 描述性统计,总结数据集分布的集中趋势,分散程度和正态分布程度,不包括NaN值: ? 描述性统计总结: ?...会用vlookup是很迷人的,因为输出结果时像变魔术一样。可以非常自信地说它是电子表格上计算的每个数据的支柱。 不幸的是Pandas中并没有vlookup功能!...由于Pandas中没有“Vlookup”函数,因此Merge用与SQL相同的备用函数。...NaN; inner——仅显示两个共享列重叠的数据。
学习Excel,数据er最常用的两大Excel功能就是VLOOKUP和数据透视表!...上一篇文章中我们已经详细讲解了Python如何实现Excel中的“Vlookup”函数?那我们今天就聊聊,如何Python实现Excel中数据透视表?...在 Pandas 模块中,调用pivot_table()方法,可以帮助我们实现数据透视表的操作。...:自动化办公轻松实战》 此外,还有两个参数用的较少,不用特别记忆。...dropna 表示是否删除缺失值,如果为True时,则把一整行全作为缺失值删除; sort=True 表示排序(版本1.3.0才有)。
中组合不同的数据集可能是一项繁琐的任务,通常涉及许多VLOOKUP公式。...连接(concatenating) 要简单地将多个数据框架粘合在一起,最好使用concat函数。从函数的名称可以看出,其处理过程具有技术名称串联(concatenation)。...图5-3.联接类型 使用join,pandas使用两个数据框架的索引来对齐行。内联接(innerjoin)返回的数据框架只包含索引重叠的行。...左联接(leftjoin)获取左数据框架df1中的所有行,并在索引上匹配右数据框架df2中的行,在df2没有匹配行的地方,pandas将填充NaN。左联接对应于Excel中的VLOOKUP情况。...最后,外联接(outerjoin)是完全外联接(fullouter join)的缩写,它从两个数据框架中获取索引的并集,并尽可能匹配值。表5-5相当于图5-3的文本形式。
请注意,对于前两行,后两列的值为NaN,因为第一个数据帧仅包含前三列。...类似于 SQL 的数据帧对象的合并/连接 merge函数用于获取两个数据帧对象的连接,类似于 SQL 数据库查询中使用的那些连接。数据帧对象类似于 SQL 表。...由于并非所有列都存在于两个数据帧中,因此对于不属于交集的数据帧中的每一行,来自另一个数据帧的列均为NaN。...有关 SQL 连接如何工作的简单说明,请参考这里。 join函数 DataFrame.join函数用于合并两个具有不同列且没有共同点的数据帧。 本质上,这是两个数据帧的纵向连接。...让我们看看当尝试将join两个具有共同列的数据帧一起使用时会发生什么: In [272]: slice1.join(slice2) -----------------------------------
Billy Bonder 61 5 5 Ayoung Atiches 16 6 5 Brian Black 16 7 7 Bryce Brice 14 8 8 Betty Btisan 15 # 将两个数据帧按照左和右数据帧的...现在,我们将创建一个“宽的”数据帧,其中行数按患者编号,列按观测编号,单元格值为得分值。...1st Piger 3 70 67 140 210 10 Scouts 2nd Riani 2 62 60 124 186 11 Scouts 2nd Ali 3 70 67 140 210 将外部值映射为数据帧的值...df[~df.name.isin(value_list)] name reports year Maricopa Jake 2 2014 Yuma Amy 3 2014 选择具有特定值的行 import...101 数据帧就像 R 的数据帧。
上周我码了几篇文章,其中一篇是《花了一周,我总结了120个数据指标与术语。》。另外我还写了两篇Pandas的基础操作文,发在了「快学Python」上,如果还没看过的同学正好可以再看一下。...在Pandas数据预处理中,缺失值肯定是避不开的。但实际上缺失值的表现形式也并不唯一,我将其分为了狭义缺失值、空值、各类字符等等。 所以我就总结了:Python中查询缺失值的4种方法。...阅读原文:Python中查询缺失值的4种方法 查找到了缺失值,下一步便是对这些缺失值进行处理,缺失值处理的方法一般就两种:删除法、填充法。...历史Pandas原创文章: 66个Pandas函数,轻松搞定“数据清洗”! 经常被人忽视的:Pandas文本数据处理! Pandas 中合并数据的5个最常用的函数!...专栏:#10+Pandas数据处理精进案例
大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。...操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...Melt Melt可以被认为是“不可透视的”,因为它将基于矩阵的数据(具有二维)转换为基于列表的数据(列表示值,行表示唯一的数据点),而枢轴则相反。...“inner”:仅包含元件的键是存在于两个数据帧键(交集)。默认合并。 记住:如果您使用过SQL,则单词“ join”应立即与按列添加相联系。...例如,考虑使用pandas.concat([df1,df2])串联的具有相同列名的 两个DataFrame df1 和 df2 : ?
本文将对pandas支持的多种格式数据在处理数据的不同方面进行比较,包含I/O速度、内存消耗、磁盘占用空间等指标,试图找出如何为我们的数据找到一个合适的格式的办法!...size_mb:带有序列化数据帧的文件的大小 save_time:将数据帧保存到磁盘所需的时间 load_time:将先前转储的数据帧加载到内存所需的时间 save_ram_delta_mb:在数据帧保存过程中最大的内存消耗增长...load_ram_delta_mb:数据帧加载过程中最大的内存消耗增长 注意,当我们使用有效压缩的二进制数据格式(例如Parquet)时,最后两个指标变得非常重要。...对比 现在开始对前文介绍的5种数据格式进行比较,为了更好地控制序列化的数据结构和属性我们将使用自己生成的数据集。 下面是生成测试数据的代码,我们随机生成具有数字和分类特征的数据集。...将五个随机生成的具有百万个观测值的数据集转储到CSV中,然后读回内存以获取平均指标。并且针对具有相同行数的20个随机生成的数据集测试了每种二进制格式。
Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量) ---- 目录 Pandas数据处理4、DataFrame记录重复值出现的次数(是总数不是每个值的数量) 前言...环境 基础函数的使用 DataFrame记录每个值出现的次数 重复值的数量 重复值 打印重复的值 总结 ---- 前言 这个女娃娃是否有一种初恋的感觉呢,但是她很明显不是一个真正意义存在的图片...,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦...版本:1.4.4 基础函数的使用 Pandas数据处理——渐进式学习1、Pandas入门基础 Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) ---- DataFrame...记录每个值出现的次数 语法 DataFrame.duplicated(subset=None,keep='first') 参数 subset:判断是否是重复数据时考虑的列 keep:保留第一次出现的重复数据还是保留最后一次出现的
如果丢失的数据是由数据帧中的非NaN表示的,那么应该使用np.NaN将其转换为NaN,如下所示。...df.replace('', np.NaN) missingno 库 Missingno 是一个优秀且简单易用的 Python 库,它提供了一系列可视化,以了解数据帧中缺失数据的存在和分布。...这将返回一个表,其中包含有关数据帧的汇总统计信息,例如平均值、最大值和最小值。在表的顶部是一个名为counts的行。在下面的示例中,我们可以看到数据帧中的每个特性都有不同的计数。...其他列(如WELL、DEPTH_MD和GR)是完整的,并且具有最大的值数。 矩阵图 如果使用深度相关数据或时间序列数据,矩阵图是一个很好的工具。它为每一列提供颜色填充。...树状图可通过以下方式生成: msno.dendrogram(df) 在上面的树状图中,我们可以看到我们有两个不同的组。第一个是在右侧(DTS、RSHA和DCAL),它们都具有高度的空值。
Automatic 4-spd 1993 NaN [100 rows x 11 columns] 现在你有一个名为新列mpgData_包含这两个True和NaN值。...如果您对缺失数据的列进行排序,那么具有缺失值的行将出现在 DataFrame 的末尾。无论您是按升序还是降序排序,都会发生这种情况。...Automatic 4-spd 1993 NaN [100 rows x 11 columns] 要改变这种行为,并有丢失的数据第一次出现在你的数据帧,可以设置na_position到first...默认情况下,此参数设置为last,将NaN值放置在排序结果的末尾。要改变这种行为,并在你的数据帧先有丢失的数据,设置na_position到first。...结论 您现在知道如何使用 pandas 库的两个核心方法:.sort_values()和.sort_index(). 有了这些知识,您就可以使用 DataFrame 执行基本的数据分析。
标签:python与Excel,pandas 至此,我们已经学习了使用Python pandas来输入/输出(即读取和保存文件)数据,现在,我们转向更深入的部分。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...图9 要获得第2行和第4行,以及其中的用户姓名、性别和年龄列,可以将行和列作为两个列表传递,如下图所示。 图10 记住,df[['用户姓名','年龄','性别']]返回一个只有三列的新数据框架。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?
如果我还没有把 Pandas 推销给你,那么电梯演讲就是:电子表格式数据的闪电般的数据分析,具有非常强大的输入/输出机制,可以处理多种数据类型,甚至可以转换数据类型。 好的,你被推销了。...每个数据帧都有日期和值列。这个日期列在所有数据帧中重复出现,但实际上它们应该全部共用一个,实际上几乎减半了我们的总列数。 在组合数据帧时,你可能会考虑相当多的目标。...通常,充满NaN数据的行来自你在数据集上执行的计算,并且数据没有真的丢失,只是你的公式不可用。在大多数情况下,你至少需要删除所有完全是NaN的行,并且在很多情况下,你只希望删除任何具有NaN数据的行。...all需要该行中的所有数据为NaN,才能将其删除。 你也可以选择any,然后设置一个阈值。 该阈值将要求存在许多非na值,才能接受该行。 更多信息,请参阅dropna的Pandas文档。...现在,我们可以遍历并删除所有标准差高于这个值的数据。 这使我们能够学习一项新技能:在逻辑上修改数据帧!
领取专属 10元无门槛券
手把手带您无忧上云