依靠内存来存储数据的数据库管理系统,也称为内存数据库,成为了解决高并发、低时延数据管理需求的技术路线。近年来,随着动态随机存储器(DRAM)容量的上升和单位价格的下降,使大量数据在内存中的存储和处理成为可能,Redis、Memcached等内存数据库管理软件逐渐成熟,应用范围越来越广。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/148807.html原文链接:https://javaforall.cn
内存数据库从范型上可以分为关系型内存数据库和键值型内存数据库。 在实际应用中内存数据库主要是配合oracle或mysql等大型关系数据库使用,关注性能。 作用类似于缓存,并不注重数据完整性和数据一致性。 基于键值型的内存数据库比关系型更加易于使用,性能和可扩展性更好,因此在应用上比关系型的内存数据库使用更多。 比较FastDB、Memcached和Redis主流内存数据库的功能特性。 FastDB的特点包括如下方面: 1、FastDB不支持client-server架构因而所有使用FastDB的应用程序必须运行在同一主机上; 2、fastdb假定整个数据库存在于RAM中,并且依据这个假定优化了查询算法和接口。 3、fastdb没有数据库缓冲管理开销,不需要在数据库文件和缓冲池之间传输数据。 4、整个fastdb的搜索算法和结构是建立在假定所有的数据都存在于内存中的,因此数据换出的效率不会很高。 5、Fastdb支持事务、在线备份以及系统崩溃后的自动恢复。 6、fastdb是一个面向应用的数据库,数据库表通过应用程序的类信息来构造。 FastDB不能支持Java API接口,这使得在本应用下不适合使用FastDB。 Memcached Memcached是一种基于Key-Value开源缓存服务器系统,主要用做数据库的数据高速缓冲,并不能完全称为数据库。 memcached的API使用三十二位元的循环冗余校验(CRC-32)计算键值后,将资料分散在不同的机器上。当表格满了以后,接下来新增的资料会以LRU机制替换掉。由于 memcached通常只是当作缓存系统使用,所以使用memcached的应用程式在写回较慢的系统时(像是后端的数据库)需要额外的程序更新memcached内的资料。 memcached具有多种语言的客户端开发包,包括:Perl、PHP、JAVA、C、Python、Ruby、C#。 Redis Redis是一个高性能的key-value数据库。redis的出现,很大程度补偿了memcached这类keyvalue存储的不足,在部分场合可以对关系数据库起到很好的补充作用。它提供了C++、Java、Python,Ruby,Erlang,PHP客户端。
你是否在为系统的数据库来一波大流量就几乎打满CPU,日常CPU居高不下烦恼?你是否在各种NoSql间纠结不定,到底该选用那种最好?今天的你就是昨天的我,这也是写这篇文章的初衷。
前言 你是否在为系统的数据库来一波大流量就几乎打满CPU,日常CPU居高不下烦恼?你是否在各种NoSql间纠结不定,到底该选用那种最好?今天的你就是昨天的我,这也是写这篇文章的初衷。
1 关系型数据库 关系型数据库把所有的数据都通过行和列的二元表现形式表示出来。它的优势: 保持数据的一致性(事务处理) 由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处) 可以进行Join等复杂查询 能够保持数据的一致性是关系型数据库的最大优势 关系型数据库的性能非常高,但是它毕竟是一个通用型的数据库,并不能完全适应所有的用途,具体来说它并不擅长以下处理: 大量数据的写入处理。 为有数据更新的表做索引或表结构(schema)变更 字段不固定时应用 对简单查询需要快速返回结果的处理 大量数据
本篇文章主要介绍Nosql的一些东西,以及Nosql中比较火的三个数据库Redis、Memcache、MongoDB特点、区别以及应用场景。
Nosql介绍 Nosql的全称是Not Only Sql,这个概念早起就有人提出,在09年的时候比较火。Nosql指的是非关系型数据库,而我们常用的都是关系型数据库。就像我们常用的mysql,ora
不同的Nosql,其实应用的场景各有不同,所以我们应该先了解不同Nosql之间的差别,然后分析什么才是最适合我使用的Nosql。 Nosql介绍 Nosql的全称是Not Only Sql,这个概念早起就有人提出,在09年的时候比较火。Nosql指的是非关系型数据库,而我们常用的都是关系型数据库。就像我们常用的mysql,sqlserver一样,这些数据库一般用来存储重要信息,应对普通的业务是没有问题的。但是,随着互联网的高速发展,传统的关系型数据库在应付超大规模,超大流量以及高并发的时候力不从心。而就在这
数据库要将数据进行管理的前提就是将数据进行存储。但是存储数据使用文件就可以了,为什么还要弄个数据库呢?
数据库是“一类软件”,这样的软件能够针对数据进行管理(增删改查) 存储数据用文件就可以了,为什么要做数据库呢? 文件保存数据有以下几个缺点:
我们所看到的所有网站,除纯静态网站外,基本上都是用到了数据库,比如MySQL、Oracle、SQLServer、PostgreSQL等,这些都是关系型数据库,所谓的关系型数据库,用一句人话来讲就是“具有关系模型的数据库”,关键就在于这个“关系模型”。关系模型咱也用一句人话来解释就是类似”一对一“、”一对多“、”多对多“的模型。
1.性能优越:快速!在适量级的内存的 MongoDB 的性能是非常迅速的,它将热数据存储在物理内存中,使得热数据的读写变得十分快,
一个程序员很有必要熟悉或者精通一种数据库,MySQL无疑是首选。为什么使用MySQL呢,因为它是开源的,同时具备轻量、简单、稳定和高性能等特点,尤其是其学习成本相对其他数据库,比如Oracle和Sybase更简单,入门更低。MySQL的应用范围从中小型Web网站到大型的企业级应用随处都可见它的身影。 关系型数据库 关系型数据库把所有的数据都通过行和列的二元表现形式表示出来。它的优势: 保持数据的一致性(事务处理) 由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处) 可以进行Join等复杂查
NoSQL,泛指非关系型的数据库,随着互联网的发展传统的关系型数据库面对持续增长的数据处理起来显得越来越力不从心,此时非关系型数据库应运而生。
数据库就是存储数据的仓库,其本质是一个文件系统,按照特定的格式将数据存储起来,用户可以对数据库中的数据进行增加,修改,删除及查询操作。
Redis是一款高性能的NoQSQL系列的非关系型数据库,那么关系型和非关系型数据库有什么区别呢?
上次小编安装好了MySQL以及Navicat Premium 15,于是小编决定先学习MySQL基础啦。可能会有小伙伴会问现在又用不到,学它干嘛,很多东西的价值并不是在当时就能体现出来的,它必然是一个长期的过程。就如读书一样,虽然小编对其它文学书籍的阅读少了许多,但还是会时不时看看,总觉得阅读能让人摆脱些困惑,哈哈哈,扯远了。
技术真的是日新月异,关系型数据库在数据库存储界称霸这么多年后,市面上各种数据库如雨后春笋蓬勃发展,似乎关系型数据库也地位不保,我前段时间和同事聊天,听到他们经常说的现在市面上的noSql数据库完全可以替代现有的关系型数据库,可是事实真的如此吗,我们一起就市面上现在比较流行的各类数据库,做一个对比:
当前的大环境和技术氛围,提供给国产化技术厂商一个千载难逢的推广机会,操作系统、数据库、中间件、办公终端各领域,无论是供应商,还是使用者,比以往任何时候都更积极和主动,并且更具成效。
还有Oracle 的Timesten、SAP的HANA等,这些商业中间件不在我们研究的范围之内。
在上一篇我们详细介绍了Redis哈希类型的使用命令及内部编码,那么在这一篇中,我们将了解了解Redis哈希类型的实际使用场景。大家都知道Redis最核心功能就是性能比较高,因为是它是将数据存储到内存中的,而这是传统的关系型数据库所不具备的。用一句通俗的话来形容关系型数据库和Redis哈希类型的关系就是关系型数据库中一条记录相当于Redis哈希类型一个key。
mysql是关系型数据库,主要用于存放持久化数据,将数据存储在硬盘中,读取速度较慢。
非关系型数据库(nosql ),属于文档型数据库。先解释一下文档的数据库,即可以存放xml、json、bson类型系那个的数据。这些数据具备自述性(self-describing),呈现分层的树状数据结构。数据结构由键值(key=>value)对组成。
简单的说,数据库(因为Database)就是一个存放数据的仓库,这个仓库是按照一定的数据结构(数据结构是指数据的组织形式或数据之间的联系)来组织、存储的,我们可以通过数据库提供的多种方式来管理数据库里的数据。
上一节我们认识了数据库,了解了数据库事务是什么,索引是如何提升数据库性能的,现在我们来学习下大家常说的一些数据库,MySQL、mongoDB、kv等等这些又有什么区别。本文中,SQL 与 NoSQL 代表关系型数据库与非关系型数据库,当然,SQL ≠ 关系型数据库,这里用作简写。
企业业务逻辑数据的递增和用户量的递增会产生大量的数据库数据量过大的问题。数据库的默认索引表都是存在。一个数据库有索引库和data数据库。索引库里面存放着索引表,指向数据存储区。Java适配的MySQL数据库默认提供每张数据记录表的索引表机制。数据库表的数据索引默认是会查找索引表之后再去数据记录表中查找数据。
NoSQL 全称 Not Only SQL , 称为 " 非关系型数据库 " ;
小编给大家分享一下mongodb和mysql有哪些区别,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
一开始我们都是用MySQL进行数据的读写,这是没事的,但是后来随着用户人数的不断上涨这就使得网站的访问量急剧上涨这就使得网站的并发量也随之上涨。并且使得数据库中存储的数据越来越庞大。这就使得在用户基数庞大的情况之下,网站处理用户的请求进而从数据库中取出相应的数据,这就使得网站的速度急剧下降。并且很容易就会造成网站的崩溃。所以人们就开始想相应的补救措施。 首先我们能理解的是为什么会这样,就是因为关系型数据库,原因有二。第一点就是从关系型数据库中取数据是要与磁盘进行交互的,众所周知,磁盘的读取与写入是最耗时间的,所以一旦访问量巨大之后磁盘的交互也会增长。第二就是关系型数据库的关系十分复杂,一张表可能关联到其他好几张表,并且在之后的过程可能还会关联更多的表这就使得数据库的扩展性能非常的差,不便于大规模的集群,所以必须要作出改变。 有两个原因,相应的就有两种解决思路。第一,既然之前都是将数据存储在磁盘上,那么与磁盘相对应的大家应该都知道,就是内存,计算机虽然与磁盘的交互十分耗时间,但是内存的交互确是磁盘的几个数量级的。所以我们可以将部分的数据存储在内存之中,但是内存又是十分珍贵的,所以只能存储部分的数据,并且做好这些数据是经常使用的即为热点数据,这样便能更加节省时间,第二就是关系型数据库本身的关系复杂的属性,那么我们是否能创造出一种非关系型的数据库,不存储关系,而是只存储数据。 于是Redis就诞生了。
Redis 是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。从2013年5月开始,Redis的开发由Pivotal赞助。(Vmware在资助着redis项目的开发和维护)
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。
什么是NoSQL? 关系型数据库代表MySQL。 非关系型数据库就是NoSQL。 对于关系型数据库来说,是需要把数据存储到库、表、行、字段里,查询的时候根据条件一行一行地去匹配,当量非常大的时候就很耗费时间和资源,尤其是数据是需要从磁盘里去检索。 NoSQL非关系型数据库存储原理非常简单(典型的数据类型为k-v)(key-value),不存在繁杂的关系链,比如mysql查询的时候,需要找到对应的库、表(通常是多个表)以及字段。 NoSQL数据可以存储在内存里,查询速度非常快。 NoSQL在性能表现上虽然能优
(1)是文档型的非关系型数据库,使用json结构。其优势在于查询功能比较强大,能存储海量数据,缺点是比较消耗内存。1.mongodb 端口(27017)
redis是Nosql数据库中使用较为广泛的非关系型内存数据库,redis内部是一个key-value存储系统。它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set –有序集合)和hash(哈希类型,类似于Java中的map)。Redis基于内存运行并支持持久化的NoSQL数据库,是当前最热门的NoSql数据库之一,也被人们称为数据结构服务器。
1.操作系统中 heap 和 stack 的区别? Java 把内存划分成两种:一种是栈内存,另一种是堆内存。 在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配,当在一段代码
mongodb和memcached不是一个范畴内的东西。mongodb是文档型的非关系型数据库,其优势在于查询功能比较强大,能存储海量数据。mongodb和memcached不存在谁替换谁的问题。 和memcached更为接近的是redis。它们都是内存型数据库,数据保存在内存中,通过tcp直接存取,优势是速度快,并发高,缺点是数据类型有限,查询功能不强,一般用作缓存。在我们团队的项目中,一开始用的是memcached,后来用redis替代。 相比memcached: 1、redis具有持久化机制,可以定期将内存中的数据持久化到硬盘上。 2、redis具备binlog功能,可以将所有操作写入日志,当redis出现故障,可依照binlog进行数据恢复。 3、redis支持virtual memory,可以限定内存使用大小,当数据超过阈值,则通过类似LRU的算法把内存中的最不常用数据保存到硬盘的页面文件中。 4、redis原生支持的数据类型更多,使用的想象空间更大。 5、前面有位朋友所提及的一致性哈希,用在redis的sharding中,一般是在负载非常高需要水平扩展时使用。我们还没有用到这方面的功能,一般的项目,单机足够支撑并发了。redis 3.0将推出cluster,功能更加强大。
随着互联网大潮的到来,越来越多网站,应用系统需要海量数据的支撑,高并发、低延迟、高可用、高扩展等要求在传统的关系型数据库中已经得不到满足,或者说关系型数据库应对这些需求已经显得力不从心了。关系型数据库经过几十年的发展已经很成熟,强大的sql语句支持,完美的ACID属性的支持,使得关系型数据库广泛应用于各种各样的应用系统中,但是应用的场景广泛并非意味着完美。
数据库是与应用程序实现信息交互的数据存储、管理软件,并且存储数据的也都可以称为数据库。在以前没有使用数据库的时候,只能够自己写数据的存储方案。
一段时间以来,巨大数量的数据处理迫使所有的应用程序在数据库层前添加缓存策略。即使经典数据库进行了大量的下划线优化,仍然不能提供足够的速度和可用性。主要原因在于数据存储越远,获取数据就越困难。另一个原因是因为数据库中的数据通常保存在磁盘中,而不是在内存。经典数据库却是在内存上嵌入了缓存来优化,但是拥有一个专用的独立缓存也是一种很常用的策略。
为什么用关系型数据库?最常见的理由是别人在用,所以我也得用,但是这个并不是理由,而是借口。
1.内存容量有限(redis本身是存储在内存里面,硬件机器本身的内容容量是有限,往redis存储的量可能很大,就会出现内存容量的问题) 2.处理能力有限(一个人干活跟二个人干活的区别。跟内存的限制相似,类似网络不好,能力就收到限制) 3.无法高可用(一旦请求量上去,可能存在系统挂掉,挂掉其他的调用系统就无法调用了)
1.传统数据库遵循 ACID 规则。( A (Atomicity) 原子性,C (Consistency) 一致性,I (Isolation) 独立性,D (Durability) 持久性)2.Nosql 一般为分布式而分布式一般遵循 CAP 定理(一致性(Consistency) (所有节点在同一时间具有相同的数据), 可用性(Availability) (保证每个请求不管成功或者失败都有响应) ,分隔容忍(Partition tolerance) (系统中任意信息的丢失或失败不会影响系统的继续运作))
好啦,接着是常规的每日两道Java面试题,不过今天有四道,希望大家可以每天看一看,加深印象
数据技术嘉年华,十周年盛大开启,点我立即报名!大会以“自研·智能·新基建——云和数据促创新 生态融合新十年” 为主题,相邀数据英雄,总结过往十年历程与成绩,展望未来十年趋势与目标!
领取专属 10元无门槛券
手把手带您无忧上云