首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

机器学习_分类_决策树

机器学习_分类_决策树 决策树算法是借助于树的分支结构实现分类。...当选择某个特征对数据集进行分类时,数据集分类后的信息熵会比分类前的小,其差值即为信息增益。 信息增益可以衡量某个特征对分类结果的影响大小,越大越好。...信息增益=abs(信息熵(分类后)-信息熵(分类前)) Gain(R)=Info(D)−InfoR(D) 决策树降剪枝 为什么要剪枝 训练出得决策树存在过度拟合现象——决策树过于针对训练的数据,专门针对训练集创建出来的分支...:即通过局部最优构造全局最优 svm: 模型在真实世界中也应用场景 支撑向量机用于文本和超文本的分类; 用于图像分类; 用于手写体识别; 这个模型的优势是什么?...决策树匹配的数据过多时; 分类的类别过于复杂; 数据的属性之间具有非常强的关联。 根据我们当前数据集的特点,为什么这个模型适合这个问题。

94710

【技术分享】决策树分类

决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 1.2 决策树学习流程   决策树学习的主要目的是为了产生一棵泛化能力强的决策树。...尽可能“纯”就是尽量让一个分裂子集中待分类项属于同一类别。分裂属性分为三种不同的情况: 1、属性是离散值且不要求生成二叉决策树。此时用属性的每一个划分作为一个分支。...在MLlib中,信息熵和基尼指数用于决策树分类,方差用于决策树回归。...2 实例与源码分析 2.1 实例   下面的例子用于分类。...= false, @Since("1.2.0") @BeanProperty var checkpointInterval: Int = 10) extends Serializable   决策树的实现我们在随机森林分类专题介绍

1.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【sklearn】1.分类决策树

    前言 决策树是机器学习中的一种常用算法。相关数学理论我也曾在数学建模专栏中数学建模学习笔记(二十五)决策树 介绍过,本篇博文不注重相关数学原理,主要注重使用sklearn实现分类树的效果。...sklearn中的决策树 模块sklearn.tree 树类型 库表示 分类树 tree.DecisionTreeClassifier 回归树 tree.DecisionTreeRegressor 生成的决策树导出为...DecisionTreeClassifier 重要参数 criterion 决定不纯度的计算方法 为了要将表格转化为一棵树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”的指标叫做...这就是分类决策树,每一个分支节点上第一行代表分支的依据。 颜色代表不纯度,颜色越深代表代表不纯度越小,叶子节点不纯度为0。...上面是分类树的结果,环形数据可以看到左侧出现一块白色,说明分类效果不好。

    79530

    实例讲解决策树分类

    如何构造决策树 决策树算法的核心是通过对数据的学习,选定判断节点,构造一颗合适的决策树。 假设我们从用户行为日志中整理出如下数据: ?...如果集合中的每一个数据项都属于同一分类,那么推测的结果总会是正确的,因此误差率是 0;如果有 4 种可能的结果均匀分布在集合内,出错可能性是75%,基尼不纯度为 0.75。...决策树 决策树剪枝 为什么要剪枝 训练出得决策树存在过度拟合现象——决策树过于针对训练的数据,专门针对训练集创建出来的分支,其熵值可能会比真实情况有所降低。...如何剪枝 人工设置一个信息增益的阀值,自下而上遍历决策树,将信息增益低于该阀值的拆分进行合并 处理缺失数据 决策树模型还有一个很大的优势,就是可以容忍缺失数据。...决策树主要解决分类问题(结果是离散数据),如果结果是数字,不会考虑这样的事实:有些数字相差很近,有些数字相差很远。

    52440

    R完成--决策树分类 一个使用rpart完成决策树分类的例子如下:

    传统的ID3和C4.5一般用于分类问题,其中ID3使用信息增益进行特征选择,即递归的选择分类能力最强的特征对数据进行分割,C4.5唯一不同的是使用信息增益比进行特征选择。...对训练数据D的信息增益g(D, A) = 集合D的经验熵H(D) - 特征A给定情况下D的经验条件熵H(D|A) 特征A对训练数据D的信息增益比r(D, A) = g(D, A) / H(D) 而CART(分类与回归...)模型既可以用于分类、也可以用于回归,对于回归树(最小二乘回归树生成算法),需要寻找最优切分变量和最优切分点,对于分类树(CART生成算法),使用基尼指数选择最优特征。  ...box.col="green",            border.col="blue", split.col="red",            split.cex=1.2, main="Kyphosis决策树...box.col="green",            border.col="blue", split.col="red",            split.cex=1.2, main="Kyphosis决策树

    2K60

    实例讲解决策树分类

    如何构造决策树 决策树算法的核心是通过对数据的学习,选定判断节点,构造一颗合适的决策树。...如果集合中的每一个数据项都属于同一分类,那么推测的结果总会是正确的,因此误差率是 0;如果有 4 种可能的结果均匀分布在集合内,出错可能性是75%,基尼不纯度为 0.75。...,信息增益最大的拆分为本次最优拆分 递归执行1、2两步,直至信息增益<=0 执行完上述步骤后,就构造出了一颗决策树,如图: 决策树 决策树剪枝 为什么要剪枝 训练出得决策树存在过度拟合现象——决策树过于针对训练的数据...如何剪枝 人工设置一个信息增益的阀值,自下而上遍历决策树,将信息增益低于该阀值的拆分进行合并 处理缺失数据 决策树模型还有一个很大的优势,就是可以容忍缺失数据。...决策树主要解决分类问题(结果是离散数据),如果结果是数字,不会考虑这样的事实:有些数字相差很近,有些数字相差很远。

    29630

    R完成--决策树分类 一个使用rpart完成决策树分类的例子如下:

    传统的ID3和C4.5一般用于分类问题,其中ID3使用信息增益进行特征选择,即递归的选择分类能力最强的特征对数据进行分割,C4.5唯一不同的是使用信息增益比进行特征选择。...对训练数据D的信息增益g(D, A) = 集合D的经验熵H(D) - 特征A给定情况下D的经验条件熵H(D|A) 特征A对训练数据D的信息增益比r(D, A) = g(D, A) / H(D) 而CART(分类与回归...)模型既可以用于分类、也可以用于回归,对于回归树(最小二乘回归树生成算法),需要寻找最优切分变量和最优切分点,对于分类树(CART生成算法),使用基尼指数选择最优特征。  ...box.col="green",            border.col="blue", split.col="red",            split.cex=1.2, main="Kyphosis决策树...box.col="green",            border.col="blue", split.col="red",            split.cex=1.2, main="Kyphosis决策树

    2.6K30

    数据挖掘系列(6)决策树分类算法

    从这篇开始,我将介绍分类问题,主要介绍决策树算法、朴素贝叶斯、支持向量机、BP神经网络、懒惰学习算法、随机森林与自适应增强算法、分类模型选择和结果评价。总共7篇,欢迎关注和交流。   ...这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后利用决策树算法做一个泰坦尼克号船员生存预测应用。...二、决策树分类   决策树算法借助于树的分支结构实现分类。下图是一个决策树的示例,树的内部结点表示对某个属性的判断,该结点的分支是对应的判断结果;叶子结点代表一个类标。 ?   ...决策树算法有一个好处,那就是它可以产生人能直接理解的规则,这是贝叶斯、神经网络等算法没有的特性;决策树的准确率也比较高,而且不需要了解背景知识就可以进行分类,是一个非常有效的算法。...属性选择方法AttributeSelectionMethod(),选择最佳分类属性的方法. 输出:一棵决策树.

    1.6K40

    第3章:决策树分类器 - 理论

    H = 熵 迎阅读监督学习的第三个基本分类算法。决策树。像前面的章节(第1章:朴素贝叶斯和第2章:SVM分类器)一样,本章也分为两部分:理论和编码练习。 在这一部分,我们将讨论理论和决策树背后的工作。...在第二部分中,我们修改了sklearn库中决策树分类器的垃圾邮件分类代码。我们将比较Naive Bayes和SVM的准确性。 ? 拒绝和招聘的黑暗面!...正如您现在猜到的那样,决策树会尝试做什么。 决策树分类器通过识别行重复地将工作区域(绘图)划分为子部分。(重复,因为可能存在两个相同类别的远距离区域,如下图所示)。 ?...image.png ---- 最后的想法 基于最大信息增益有效划分是决策树分类器的关键。...在接下来的部分,我们将使用Python中sklearn库代码决策树分类。我们将通过容忍一些杂质来调整一些参数以获得更高的准确度。 ---- 我希望本节有助于理解Decision树分类器背后的工作。

    98920

    机器学习第9天:决策树分类

    介绍 作用:分类 原理:构建一个二叉树,逐级条件判断筛选 基本思想 假如有小明,小红和小张三个人,我们知道他们的身高体重,要通过身高体重来判断是哪个人,决策树算法会构建一个二叉树,逐级判断,如下...DecisionTreeClassifier tree_clf = DecisionTreeClassifier(max_depth=2) tree_clf.fit(X, y) max_depth参数设置的是决策树的深度...,上图的深度是2,它代表决策的次数 深度探索 优点 我们来看决策树的过程:每到一个节点进行一次询问,然后将数据集分向其他的节点,这样的特性决定了数据不需要经过特征缩放的处理 估计概率 决策树模型可以输出每个类的概率...这将输出每个类的概率 model = DecisionTreeClassifier(max_depth=2) model.fit(x, y) model.predict_proba(x) 训练算法 决策树的训练算法被称为...它的公式为 为第k类的实例数 为总实例数 正则化 为了防止过拟合,我们当然要进行正则化,决策树的正则化通过控制参数max_depth来决定,越大则越可能过拟合 在鸢尾花数据集上训练决策树 from sklearn.datasets

    9610

    决策树:最清晰明了的分类模型

    决策树属于监督学习算法的一种,根据原始输入数据中的特征,构建一个树状模型来进行分类。比如探究早晨是否出去打网球的例子,输入数据如下 ? 一共有14个样本,其中9个早上都出去打球,5个早上没出去打球。...输入数据的每一个特征作为决策树中的一个节点,根据其取值的不同,划分不同的分支,根据各个特征的取值,按照这个树状结构就可以解释一个样本的分类情况。...对于决策树模型,其解释性非常强,可以看做是一连串的if-else条件,根据该条件就可以轻松的预测一个新的样本点。决策树的输入和输出都比较直观,核心就在于构建合适的分类树。...除了基于熵的信息增益,还有一种CART算法,该算法扩展了传统的决策树,既可以进行回归,也可以进行分类。...在处理回归问题时,采用最小二乘法的思想,即均方误差最小来选取特征;在处理分类问题时,采用基尼指数来表征样本的混乱程度。基尼系数的计算公式如下 ? 相比熵而言,基尼系数没有对数运算,计算更快捷。

    64820

    机器学习决策树:sklearn分类和回归

    1 逻辑回归和决策树分类比较 昨天的推送机器学习:对决策树剪枝,分析了决策树需要剪枝,今天再就这个话题,借助 sklearn 进一步分析决策树分类和回归时过拟合发生后,该如何解决的问题。...从结果中可以看出,逻辑回归的分类效果是不错的,那么我们尝试用决策树分类这个数据集,看看效果是怎么样的。 ?...因此在做决策树回归时,和分类一样,也要考虑过拟合的问题,如果发生过拟合,一般通过调整决策树的超参数来降低过拟合。...好了,这三天笔记了决策树的一些基本理论:特征选取方法,如何防止过拟合的发生,以及sklearn中的API直接调用模拟了决策树分类和回归。...接下来,是否准备自己手动编写一个决策树分类器和回归器,进一步加深对决策树CART算法的理解。

    1.6K80
    领券