传统的ID3和C4.5一般用于分类问题,其中ID3使用信息增益进行特征选择,即递归的选择分类能力最强的特征对数据进行分割,C4.5唯一不同的是使用信息增益比进行特征选择。...对训练数据D的信息增益g(D, A) = 集合D的经验熵H(D) - 特征A给定情况下D的经验条件熵H(D|A)
特征A对训练数据D的信息增益比r(D, A) = g(D, A) / H(D)
而CART(分类与回归...)模型既可以用于分类、也可以用于回归,对于回归树(最小二乘回归树生成算法),需要寻找最优切分变量和最优切分点,对于分类树(CART生成算法),使用基尼指数选择最优特征。
...box.col="green",
border.col="blue", split.col="red",
split.cex=1.2, main="Kyphosis决策树...box.col="green",
border.col="blue", split.col="red",
split.cex=1.2, main="Kyphosis决策树