在《Excel公式技巧54:在多个工作表中查找最大值最小值》中,我们在MAX/MIN函数中使用多工作表引用来获取最大值/最小值。在《Excel公式技巧55:查找并获取最大值最小值所在的工作表》中,我们更进一步,获取最大值/最小值所在的工作表名称。本文来讲解如何利用公式获取最大值/最小值在哪个单元格。
为了改进蝴蝶算法容易陷入局部最优和收敛精度低的问题,本文从三个方面对蝴蝶算法进行改进。首先通过引入柯西分布函数的方法对全局搜索的蝴蝶位置信息进行变异,提高蝴蝶的全局搜索能力;其次通过引入自适应权重因子来提高蝴蝶的局部搜索能力;最后采用动态切换概率 p p p平衡算法局部搜索和全局搜索的比重,提升了算法的寻优性能。因此本文提出一种混合策略改进的蝴蝶优化算法(CWBOA)。
引言:本文的练习整理自chandoo.org。多练习,这是我们从小就在使用的学习方法。在练习的过程中,认真思考,不断尝试,以此来磨练自己的公式与函数应用技能,也让研究Excel的大脑时刻保持着良好的状态。同时,想想自己怎么解决这个问题,看看别人又是怎样解决的,从而快速提高Excel公式应用水平。
在《Excel公式技巧54:在多个工作表中查找最大值最小值》中,我们在MAX/MIN函数中使用多工作表引用来获取最大值/最小值。现在更进一步,我们想要获取最大值/最小值所在的工作表名称。
要在Excel工作表中获取最大值或最小值,我们马上就会想到使用MAX/MIN函数。例如,下图1所示的工作表,使用公式:
我们来生成一组随机整数作为案例 输入 =RANDBETWEEN(1,100) 然后下拉到A1:A10 好了 我们复制→粘贴为值 以防它再次随机改变 这是我们的案例数据 在实际的应用中 我们除了求最大最小的那个值 还经常要求第N个,例如第2个,第3个最大最小值 例如 我们知道了第一名分数是99 我们想知道第二名分数是多少 以知道他们的差距有多大 我们用Large和Small来求最大值和最小值 这是一对相反数 成对记起来更容易 Large(数据范围,想要的第N个最大值) 在我们的例子中 如果要求第
小勤:大海,在PowerQuery里面能不能对一列数求和、算个数、求最大、最小值之类的啊?
我想,这个很容易,Excel就可以计算啊,但是作为R语言的用户,一定要用R语言解决才可以,所以我就写了一个函数,可以批量去生成多个性状的结果。
线性判别分析,全称是Linear Discriminant Analysis, 简称LDA, 是一种属于监督学习的降维算法。与PCA这种无监督的降维算法不同,LDA要求输入数据有对应的标签。
众所周转,单纯形法是求解线性规划问题最常用、最有效的算法之一,一些做优化的软件比如lingo都有对应很成熟的实现库,该方法的提出是由Spendley、Hext和Himswor等人在1962年提出的,它虽然是一个代数计算过程,但是本质还是基于几何原理,且它不需要计算目标函数的梯度,也就避免了一系列的求导操作,也是优化领域较为奠基的方法之一。
线性回归是通过一个或多个自变量与因变量之间进行建模的回归分析,其特点为一个或多个称为回归系数的模型参数的线性组合。如下图所示,样本点为历史数据,回归曲线要能最贴切的模拟样本点的趋势,将误差降到最小。
在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。
在实际工作中,我们经常需要从某列返回数据,该数据对应于另一列满足一个或多个条件的数据中的最大值。
【高等数学】【3】微分中值定理与导数的应用 1. 微分中值定理 1.1 罗尔定理 1.1.1 费马引理 1.1.2 罗尔定理 1.2 拉格朗日中值定理(微分中值定理) 1.3 柯西中值定理 2. 洛必达法则 2.1 洛必达定理1【0/0】 2.2 洛必达定理2【∞/∞】 2.3 类型靠拢0/0或∞/∞ 2.* 注意事项🎈 3. 泰勒公式 3.1 泰勒中值定理1 3.2 泰勒中值定理2 3.3 麦克劳林公式 4. 函数的单调性与曲线的凹凸性 4.1 函数单调性 4.2 曲线的凹凸性与拐点 5. 函数的极值与最
来代替||w||,我们去求解 ||w||2 的最小值。然后在这里我们还忽略了一个条件,那就是约束条件,在上一篇的公式(8)中的不等式就是n维空间中数据点的约束条件。只有在满足这个条件下,求解||w||2的最小值才是有意义的。思考一下,若没有约束条件,那么||w||2的最小值就是0,反应在图中就是H1和H2的距离无限大那么所有点都会在二者之间,都属于同一类,而无法分开了。
点的函数值,导数值,二阶导数值得到的抛物线,我们求这条抛物线的梯度为 0(即最小值)的点
简单公式表达:y = (x-min Value)/(max Value-min Value)
分位值在薪酬的数据分析中是最重要的一个概念,不管是在和外部的数据对对标还是在内部的数据做结构分析,我们都是以分位值的数据来进行对标。
在做薪酬数据分析中,我们确定了岗位的各个职级,基于薪酬宽带的薪酬设计理论,我们需要对各个职级的薪酬再做一个薪酬的带宽,如下图
小勤:像下面这个需求,要将左边的数据源按不同字母涉及的数字进行区间组合,怎么弄比较好?
示例:下表D:F列中,如果填充“完成”大于1个,则在G列返回达标,否则返回不达标。
本文案例有多重背景,其一便是上海VIP培训活动中,小伙伴当场拿出实际业务来希望实现作图,从开始到超预期的完美实现,共计20分钟。小伙伴可亲自见证在完全精通 PowerBI DAX 下,可以直接驱动作图实现原来无法完成的效果。
上周的内容不知道读者们有没有都理解消化,不能每次都那么难懂,打击了大家的学习兴趣那才不好,所以本周的内容小编便准备的比较简单。好了下期再见吧!
在日常工作中,数据统计是工作中最重要的一部分。今天把Excel中最常用的统计函数整理了出来,共16个。为了方便同学们理解,选取的全是贴近应用的示例。
机器学习(六)——线性回归的多变量、特征缩放、标准方程法 (原创内容,转载请注明来源,谢谢) 一、多变量 当有n个特征值,m个变量时,h(x)=θ0+θ1x1+θ2x2…+θnxn,其中可以认为x0=1。因此,h(x)= θTx,其中θ是一维向量,θ=[θ0,θ1…θn] T,x也是一维向量,x=[x0,x1..xn] T,其中x0=1。 二、特征缩放(FeatureScaling) 特征缩放的目的,是为了让每个特征值在数量上更加接近,使得每个特征值的变化的影响相对比较“公平”。 其将每个特征值,除
一种常用的库存管理方法是定期检查库存控制方法:管理者必须定期检查库存水平,并决定订货量,期望能够以稳定的服务水平满足企业内外部对存储货物的需求。如果企业内外部对货物需求是确定的,那么每次检查后的订货量就很容易满足。然而,当外界对货物的需求具有不确定性,管理者需要考虑和计算订货量满足预期服务水平的可能性。为了建立一个一致的科学的库存管理策略,需要确定企业内外部对货物的需求量变化情况和目标服务水平,并建立一个风险量化分析模型确定订货量。如果每次的订货量很大,那么可以保证较高的服务水平,但同时也会造成货物库存积压比较严重,造成库存成本增加。如果每次订货量较少,那么可能无法保证服务水平。此外,管理者在计算订货量时需要考虑两个时间段内市场对货物需求量大小:第一段时间时两次检查的间隔时间,第二段时间时从订货到收货的间隔时间。
机器学习(十七)——SVM进一步认识 (原创内容,转载请注明来源,谢谢) 注:这两天边看ng的svm视频,边看机器学习实战的书的svm代码,两边都看的云里雾里的,故开始各种搜索资料,最终现在有了比两天前刚学svm时候认识更深一些些,现在就说说这两天对svm的认识。 一、概念 svm称为支持向量,所谓的支持向量,就是在后面划分最大间距的时候,参与运算的向量,且最终新的样本进行比较,也只需要通过支持向量进行比较就可以了,不关心离边界线太远的其他向量。 下图,在一个二维环境中,其中点R,S,
机器学习(十七) ——SVM进一步认识 (原创内容,转载请注明来源,谢谢) 注:这两天边看ng的svm视频,边看机器学习实战的书的svm代码,两边都看的云里雾里的,故开始各种搜索资料,最终现在有了比两天前刚学svm时候认识更深一些些,现在就说说这两天对svm的认识。 一、概念 svm称为支持向量,所谓的支持向量,就是在后面划分最大间距的时候,参与运算的向量,且最终新的样本进行比较,也只需要通过支持向量进行比较就可以了,不关心离边界线太远的其他向量。 下图,在一个二维环境中,其中点R,S,G点和其它靠近中间黑
大家好,上节介绍过按钮、数值调节钮和滚动条控件,本节主要演示在工作表中结合函数公式来扩展数值调节钮功能的示例。(滚动条和数值调节钮的使用方法雷同,只使用数值调节钮来演示。)
在日常生活和工作中,我们都会或多或少的使用Excel中的计算公式函数,比如求和公式、平均数公式等。今天为大家整理了一些在线Excel中可以引入的公式函数。
解题思路:首先题目出现函数端点的值,还有函数在区间中点的一阶导数值,故想到用泰勒公式即想到在
假设我们有一份销售数据表,其中包括产品名称、销售数量和销售日期。我们可以使用 Excel 函数与公式对这些数据进行分析和计算,例如:
提示:使用EXCEL进行数据分组的案例详解,三种方法:IF函数,VLOOKUP函数,LOOKUP函数,回复给邮箱,友情赠送EXCEL文档实例,以后自己套用即可。 原始数据 某网站50个页面的PV,数据
前几天 灰灰哥回家了,家里有点小事,没有带电脑回家,不好意思,今天给大家补一下前几天的基础。谈正题,今天更新的还是导数与微分的问题,有问题的欢迎留言。
关于梯度下降法的理解,梯度下降法是一个一阶最优化算法。要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。
《一大波常用函数公式》微信推送后,同学们很是喜爱,今天重发,小伙伴们可以收藏一下,在日常工作中如果有类似的问题,拿来即用。 话不多说,上菜—— 1、查找重复内容公式: =IF(COUNTIF(A:A,
泰勒公式,是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。
今天给大家讲解excel函数入门必备知识——绝对引用与相对引用! ▽ 别怪小魔方大过年的污染大家心情 不知道是哪根筋不对 就是这么勤劳、敬业 今天给大家讲解excel函数基础——绝对引用与相对引用 不
支持向量机和支持向量回归是目前机器学习领域用得较多的方法,不管是人脸识别,字符识别,行为识别,姿态识别等,都可以看到它们的影子。在我的工作中,经常用到支持向量机和支持向量回归,然而,作为基本的理论,却没有认真地去梳理和总结,导致有些知识点没有彻底的弄明白。这篇博客主要就是想梳理一遍支持向量机和支持向量回归的基础理论知识,一个是笔记,另一个是交流学习,便于大家共勉。
在做薪酬的数据分析过程中,我们的基础薪酬数据来源于薪酬的年度基础数据表,在这个表的基础上,我们需要对数据进行汇总分析生成薪酬的数据分析报表,在薪酬的数据汇总报表中有薪酬的一些指标数据,比如各个层级的薪酬最大值,最小值,各个层级的薪酬带宽,各个层级的中位值。这些关键指标都是来源于薪酬的数据基础表,在这个过程中,我们希望能快速的 自动的可以进行这些关键指标的计算,汇总。
函数功能:生成[n,m]的随机整数。 在js生成验证码或者随机选中一个选项时很有用
1>. Math.random() 表示生成 [0,1) 的数,所以 Math.random()*5 生成的都是 [0,4] 的随机整数。 2>Math.floor(num); 参数num为一个数值,函数结果为num的整数部分。 3>.Math.round(num); 参数num为一个数值,函数结果为num四舍五入后的整数。 4>.Math.ceil(n); 返回大于等于n的最小整数。 5>.random()%51+13我们可以看成两部分:rand()%51是产生 0~50 的随机数,后面+13保证 a 最小只能是 13,最大就是 50+13=63。
在诸如基于条件查找最小值或最大值、计算标准偏差等情形时,Excel没有提供相应的内置函数,必须编写数组公式,其中往往涉及到在数组中使用比较运算符。
2、指定单元格求和:输入=sum(),在括号中间按住ctrl连续点击即可选择需要求和的数据
在机器学习中会经常用到求导数相关的许多求导公式,比如在梯度下降中就经常用到,其中最常用的就是一下几个:
冈萨里斯数字图像处理的那本书的一小点点东西,数字图像处理其实是学过了的,这里我只是把这本书完整看一遍,也是略略的看,查漏补缺,前两张略过了,从第三章开始。
描述性统计常用来揭示数据的基本特征,常见的指标有最大值、最小值、中位值、平均值、标准差等。在Power BI产品线价格带分析:以耐克、阿迪达斯、安踏和李宁为例中,笔者展示了价位带分析的图表制作方式,涉及的分析维度包含了描述性统计指标。
BIGO的提前批正式批都有笔试,笔试内容不难,有线上也有线下。 体验总结 再次强调:topk 问题可能会迟到,但永远不会缺席 此外海量数据问题也是非常常见的 一面 自我介绍+项目 1000W(n)个数,找出前100(k)个最小的数: (如果能放下,用堆,时间复杂度nlogk) (如果放不下,用多路归并,每一路大小M,时间复杂度N/M * mlogm + klog(N/M)) 【注意:topk问题,在内存放不下时,也属于海量数据问题之一,多用mapreduce来解决】 一个圆上的三点能构成锐角三角形的概
领取专属 10元无门槛券
手把手带您无忧上云