此公众号会从消息中间件的一些概念出发,陆续介绍分布式消息中间件的应用领域,涉及的技术等,最后到自己设计和实现一个分布式消息中间件。
随着云计算技术的持续发展,特别是近年来云原生技术在各个行业的蓬勃应用,企业的IT基础设施、中间件以及应用开发架构都发生了深刻的变化。
分布式消息队列中间件是一种在分布式系统中用于高效、可靠地传递消息的软件技术。它允许不同的应用程序或服务之间进行异步通信,从而提高了系统的可扩展性和灵活性。
此篇已收录至《大型网站技术架构》读书笔记系列目录贴,点击访问该目录可获取更多内容。
分布式消息队列中间件是一种在分布式系统中负责消息传递的软件。它允许系统中的不同组件通过发送和接收消息来进行通信。分布式消息队列中间件可以提高系统的可伸缩性、可靠性和解耦性。本文将介绍如何从0到1手写一个简单的分布式消息队列中间件。
本项目由数新网络投递并参与“数据猿年度金猿策划活动——2022大数据产业创新技术突破榜单及奖项”评选。
本文给出了分布式系统的初步概念模型,通过介绍分布式消息队列的几种分类以及Redis的分布式高可用哨兵模型,进而引出分布式系统的几个特征,副本,故障总会发生,消息的多样性,异常的分类。
‘分布式消息队列’包含两个概念 一是‘消息队列’,二是‘分布式’ 那么就先看下消息队列的概念,和为什么需要分布式 消息队列的定义 “消息”指进程间传送的数据 “队列”是在消息的传输过程中保存消息的容器 消息被发送到队列中,消息队列充当中间人,将消息从源发送给目标 当系统中出现“生产“和“消费“的速度或稳定性等因素不一致时,就需要消息队列,作为抽象层,弥合双方的差异 例如 (1)服务员点菜快,厨师做菜慢,服务员只需要下单给厨师,然后就可以继续去服务顾客,不需要等待厨师把菜做完 点菜单就相当于
上一篇中我们详细分析了分布式事务,以及分布式事务的两种实现方案,二阶段提交和三阶段提交。他们都是满足了事务的ACID特性。但是,他们都有共同的缺点:同步阻塞,系统性能低以及没有解决数据不一致的问题。那今天我们来学另一种方案,基于消息的实现方式。
OpenMessaging 项目由阿里巴巴发起,与雅虎、滴滴出行、Streamlio 公司共同参与创立,项目意在创立厂商中立、平台无关的分布式消息及流处理领域的应用开发标准。
先看一下什么是同步调用。所谓的同步调用,就是说从请求的发起一直到最终的处理完成期间,请求的调用方一直在同步阻塞,等待调用的处理完成。下图所示的例子中,客户端代码 ClientCode,需要执行发送邮件 sendEmail 这样一个操作,它会调用 EmailService 进行发送,而 EmailService 会调用 SmtpEmailAdapter 类来进行处理,这个类会调用远程的一个服务,通过 SMTP 和 TCP 协议发送请求。
消息的生产者将消息送到消息队列以后,由消息的消费者从消息队列中获取消息,然后进行业务逻辑的处理,消息的生产者和消费者是异步处理的,彼此不会等待阻塞,所以叫做异步架构。
Apache Kafka(简称Kafka)是由LinkedIn公司开发的分布式消息流平台,于2011年开源。
在大数据学习当中,重点之一就是大数据技术框架,针对于大数据处理的不同环节,需要不同的技术框架来解决问题。以Kafka来说,主要就是针对于实时消息处理,在大数据平台当中的应用也很广泛。今天我们就主要来讲讲分布式消息系统Kafka的入门基础。
主题,从逻辑上讲一个Topic就是一个Queue,即一个队列;从存储上讲,一个Topic存储了一类相同的消息,是一类消息的集合。比如一个名称为trade.order.queue的Topic里面存的都是订单相关的消息。
大数据生态圈中有很多优秀的组件,可谓琳琅满目,按组件类别可分为存储引擎、计算引擎,消息引擎,搜索引擎等;按应用场景可分为在线分析处理OLAP型,在线事务处理OLTP型,以及混合事务与分析处理HTAP型等。有些组件主要存储日志数据或者只允许追加记录,有些组件可更好的支持CDC或者upsert数据。有些组件是为离线分析或批处理而生,有些则更擅长实时计算或流处理。本文整理了几个笔者认为非常重要且仍然主流的核心组件,供参考。
在IT江湖里,消息队列(MQ)可是个响当当的“神器”。它就像是一个超级邮差,负责在系统间传递信息,确保数据能够准确无误地从一个地方送到另一个地方。今天,我们就来聊聊如何从0到1,亲手打造一个分布式消息队列中间件,让你也能成为MQ领域的大牛!
在构建大规模爬虫系统时,我们常常面临一系列挑战。这些挑战包括高效爬取、频率限制、分布式处理、存储和数据管理等方面。为了应对这些挑战,我们需要采取一些解决思路和策略。在本文中,我将与大家分享大规模爬虫系统面临的主要挑战以及解决思路,希望对你构建高效稳定的爬虫系统有所帮助。
将系统再横向维度上切成几个部分,每个部分负责一部分相对单一的职责。就好比平时一份工作比较多的时候,团队中大家各自负责自己擅长的那一部分。大型网站中一般分为三层:
如上图,在不使用消息队列服务器的时候,用户的请求数据直接写入数据库,在高并发的情况下数据库压力剧增,使得响应速度变慢。但是在使用消息队列之后,用户的请求数据发送给消息队列之后立即 返回,再由消息队列的消费者进程从消息队列中获取数据,异步写入数据库。由于消息队列服务器处理速度快于数据库(消息队列也比数据库有更好的伸缩性),因此响应速度得到大幅改善。
Apache RocketMQ 是一个分布式消息中间件,其具有低延迟、高性能和可靠性、万亿级容量、灵活的可扩展性特性;它是阿里巴巴在2012年开源的分布式消息中间件,目前已经捐赠给 Apache 软件基金会,并于2017年9月25日成为 Apache 的顶级项目。
近期正在探索前端、后端、系统端各类常用组件与工具,对其一些常见的组件进行再次整理一下,形成标准化组件专题,后续该专题将包含各类语言中的一些常用组件。欢迎大家进行持续关注。
首先,在学习大数据之前,需要了解什么是大数据?它是如何诞生的?它有哪些应用场景?只有了解了这些,才能窥视大数据的技术全貌。一个技术的诞生,是顺应时代的,是用于解决某些问题的,它的发展也一定是有内在逻辑的。接下来,一起去看看。
我们平时的单机事物的使用,一步操作,要么全部执行完成,要么全部不执行,也就是ALL or Nothing。但是如果我们使用了分布式,一件事情分为多个分别在多个在不同的机器(进程)上执行。那对于这种的事物我们应该如何控制呢?
性能调优 性能优化本质 JVM调优 深入Tomcat的调优 mysql调优那些事 怎么写优雅的java代码 Spring源码分析 Spring Framework体系结构 spring源码环境搭建 Spring容器实现与组成 Java Bean的前世今生 BeanFactory源码分析 Spring的依赖实现 Spring AOP全解析 Spring Transaction源码解读 Spring Cache源码解读 Spring 5.0新特性分析 Spring MVC源码分析 Spring MVC的使用与
Kafka初识 1、Kafka使用背景 在我们大量使用分布式数据库、分布式计算集群的时候,是否会遇到这样的一些问题: 我们想分析下用户行为(pageviews),以便我们设计出更好的广告位 我想对用户的搜索关键词进行统计,分析出当前的流行趋势 有些数据,存储数据库浪费,直接存储硬盘效率又低 这些场景都有一个共同点: 数据是由上游模块产生,上游模块,使用上游模块的数据计算、统计、分析,这个时候就可以使用消息系统,尤其是分布式消息系统! 2、Kafka的定义 What is Kafka:它是一个分布式消息系统
分布式消息队列中间件是是大型分布式系统不可缺少的中间件,通过消息队列,应用程序可以在不知道彼此位置的情况下独立处理消息,或者在处理消息前不需要等待接收此消息。所以消息队列主要解决应用耦合、异步消息、流量削锋等问题,实现高性能、高可用、可伸缩和最终一致性架构。消息队列已经逐渐成为企业应用系统内部通信的核心手段,当前使用较多的消息队列有 RabbitMQ、RocketMQ、ActiveMQ、Kafka、ZeroMQ、MetaMQ 等,而部分数据库如 Redis、MySQL 以及 PhxSQL 也可实现消息队列的功能。
大数据技术的核心,离不开分布式理论。大数据从概念走向落地,也是因为大数据技术的成熟,换句话说,就是大数据技术使得大规模数据处理成为可能,而大数据技术背后的核心,指向的是分布式理论。今天我们就来具体讲一讲分布式技术基础入门。
上篇文章介绍了RocketMQ整体架构和原理有兴趣的可以阅读一下,在这篇文章中的延时消息部分,我写道开源版的RocketMQ只提供了18个层级的消息队列延时,这个功能在开源版中显得特别鸡肋,但是在阿里云中的RocketMQ却提供了支持40天之内任意秒级延时队列,果然有些功能你只能充钱才能拥有。当然你或许想换一个开源的消息队列,在开源社区中消息队列延时消息很多都没有被支持比如:RabbitMQ,Kafka等,都只能通过一些特殊方法才能完成延时的功能。为什么这么多都没有实现这个功能呢?是因为技术难度比较复杂吗?接下来我们分析一下如何才能实现一个延时消息。
简而言之,采用分布式系统,分布式应用和服务,分布式数据和存储,分布式静态资源,分布式计算,分布式配置和分布式锁。
(1)事务(Transaction),一般是指要做的或所做的事情。在计算机术语中是指访问并可能更新数据库中各种数据项的一个程序执行单元(unit)。
在P2P模型中,有几个关键术语:消息队列(Queue)、发送者(Sender)、接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到它们被消费或超时。
了不起最近发现同事们都在使用Redission,为了不被其他同事瞧不起,了不起私底下偷偷补了功课,发现Redisson 是一个功能强大的 Java 客户端,它基于 Redis 提供了丰富的分布式功能和工具。Redisson 可以帮助我们更轻松地在分布式项目中使用 Redis,并提供了简单易用的 API,简化了复杂的分布式编程过程。在本文中,了不起将通过多个例子来展示 Redisson 在不同场景下的应用。
前段时间跟一个朋友聊起kafka,flint,spark这些是不是某种分布式运算框架。我自认为的分布式运算框架最基础条件是能够把多个集群节点当作一个完整的系统,然后程序好像是在同一台机器的内存里运行一样。当然,这种集成实现方式有赖于底层的一套消息系统。这套消息系统可以把消息随意在集群各节点之间自由传递。所以如果能够通过消息来驱动某段程序的运行,那么这段程序就有可能在集群中任何一个节点上运行了。好了,akka-cluster是通过对每个集群节点上的中介发送消息使之调动该节点上某段程序运行来实现分布式运算的。那么,kafka也可以实现消息在集群节点间的自由流通,是不是也是一个分布式运算框架呢?实际上,kafka设计强调的重点是消息的接收,或者叫消息消费机制。至于接收消息后怎么去应对,用什么方式处理,都是kafka用户自己的事了。与分布式运算框架像akka-cluster对比,kafka还缺了个在每个集群节点上的”运算调度中介“,所以kafka应该不算我所指的分布式运算框架,充其量是一种分布式的消息传递系统。实际上kafka是一种高吞吐量、高可用性、安全稳定、有良好口碑的分布式消息系统。
Metamorphosis (MetaQ) 是一个高性能、高可用、可扩展的分布式消息中间件,类似于LinkedIn的Kafka,具有消息存储顺序写、吞吐量大和支持本地和XA事务等特性,适用 于大吞吐量、顺序消息、广播和日志数据传输等场景,在淘宝和支付宝有着广泛的应用,现已开源。
OpenMessaging是阿里牵头发起的分布式消息模型标准,其api规范首先在rocketmq中落地实现。通过这个标准可以简化各种消息中间件的高复杂性和不兼容性,提升消息中间件服务的易用性。
由于分布式系统所涉及到的领域众多,知识庞杂,很多新人在最初往往找不到头绪,不知道从何处下手来一步步学习分布式架构。
随着互联网技术在各行各业的应用高速普及与发展,各层应用之间调用关系越来越复杂,架构、开发、运维成本越来越高,高内聚、低耦合、可扩展、高可用已成为了行业需求。
近年来,随着微服务架构的流行,分布式消息引擎在物联网、分布式事务、实时计算和大规模缓存同步等场景中的应用日益增多。本文将分享微众银行基于RocketMQ构建消息服务平台的实践,并通过添加诸多高级特性来解决消息收发过程中遇到的各种问题,通过此文,您将了解到:
上篇文章总结了《深入实践Spring Boot》的第二部分,本篇文章总结第三部分,也是最后一部分。这部分主要讲解核心技术的源代码分析,因为篇幅和能力原因,分析的不会太详细,后续深入研究后再专门写文章。希望大家能从「阅读笔记」3篇文章中,对Spring Boot提供的功能有所了解,在项目中进行实践,不断从繁琐重复的开发中解放出来。
Kafka是LinkedIn在2010年开发的分布式消息系统• 使用于LinkedIn的活动流和运营数据处理的管道
精彩早知道 消息队列概述 消息队列应用场景 消息中间件示例 JMS消息服务(见第二篇:大型网站架构系列:分布式消息队列(二)) 常用消息队列(见第二篇:大型网站架构系列:分布式消息队列(二)) 参考(推荐)资料(见第二篇:大型网站架构系列:分布式消息队列(二)) 本次分享总结(见第二篇:大型网站架构系列:分布式消息队列(二)) 一、消息队列概述 消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题。实现高性能,高可用,可伸缩和最终一致性架构。是大型分布式系统不可缺少的中间件。
本文向读者介绍两个优秀的分布式消息流平台:Kafka与Pulsar。 Apache Kafka(简称Kafka)是由LinkedIn公司开发的分布式消息流平台,于2011年开源。Kafka是使用Scala和Java编写的,当下已成为最流行的分布式消息流平台之一。Kafka基于发布/订阅模式,具有高吞吐、可持久化、可水平扩展、支持流数据处理等特性。 Apache Pulsar(简称Pulsar)是雅虎开发的“下一代云原生分布式消息流平台”,于2016年开源,目前也在快速发展中。Pulsar集消息、存储、轻量化
导语:由中国信息通信研究院、中国通信标准化协会联合主办的“2020可信云大会”于昨天圆满结束,会上发布了2020年可信云上半年最新评估结果。其中腾讯云中间件——分布式消息队列TDMQ凭借其优秀的技术能力,获得了可信云最高级认证证书。
👆点击“博文视点Broadview”,获取更多书讯 本文向读者介绍两个优秀的分布式消息流平台:Kafka与Pulsar。 Apache Kafka(简称Kafka)是由LinkedIn公司开发的分布式消息流平台,于2011年开源。Kafka是使用Scala和Java编写的,当下已成为最流行的分布式消息流平台之一。Kafka基于发布/订阅模式,具有高吞吐、可持久化、可水平扩展、支持流数据处理等特性。 Apache Pulsar(简称Pulsar)是雅虎开发的“下一代云原生分布式消息流平台”,于2016年开源
支付宝是属于第三方支付平台,是蚂蚁集团 旗下的支付平台系统,支付宝也是中国支付行业的一个标兵,无论是业务能力还是产品创都引领者中国支付行业的前沿,作为支付业务的基础系统的复杂性和稳定性是支付业务是否能够及时快速安全处理的根本。
对于Apache RocketMQ的了解,追溯起来,可以说是从开源初始,就认识到了它。那时候的它,还是个幼年,没有成熟的社区,也没有好的机制去运作。本身,也不算是成熟的产品。
进入十一月,最火热的话题与期待的日子自然是双十一狂欢购物节了,作为程序员的你除了要清空自己的购物车之外,最关心的是不是双十一架构技术是如何承受亿级用户流量的冲击,又是如何在分布式架构中实现单点登陆,形成支持高并发,高可用的分布式架构技术呢?下面小编就来帮你总结如何从0到1学习分布式架构技术,如何实现从小白到架构师的蜕变!!
领取专属 10元无门槛券
手把手带您无忧上云