大数据对一些数据科学团队来说是主要的挑战,因为在要求的可扩展性方面单机没有能力和容量来运行大规模数据处理。此外,即使专为大数据设计的系统,如 Hadoop,由于一些数据的属性问题也很难有效地处理图数据,我们将在本章的其他部分看到这方面的内容。
本文介绍了腾讯游戏社交算法团队研发的能够处理百亿级大规模图数据的分布式网络表征算法,及其在多个游戏业务场景落地应用,并且取得明显的实际业务效果提升。
学习spark之前,我们需要安装Python环境,而且需要安装下边这两个关于Spark的库:
作者 | Jiale Zhi,Rui Wang,Jeff Clune,Kenneth O. Stanley
当前数据仓库的主流架构:分为两个方向一个是 hadoop 体系,一个是 MPP 数据库
随着移动互联网的发展进入新的方向,移动互联网中的智能化已经成为新的发展趋势和主要需求。智能化需求目前主要体现在两个方面: ●一方面是促生新的智能化应用,如自动驾驶汽车、虚拟现实和增强现实应用等,拓宽移动应用领域为用户提供更多应用选择。 ●另一方面是基于目前已有的大量应用数据进行智能化分析,在现有移动应用的基础上分析用户需求、明晰用户目标、提供用户感受,让用户在固有移动应用领域体验提升。 在智能化引领发展的阶段中,人工智能技术正在越来越广泛地应用在移动互联网领域,越来越多的人工智能技术更多地参与到移动互联网发
智能化需求体现在两个方面 随着移动互联网的发展进入新的方向,移动互联网中的智能化已经成为新的发展趋势和主要需求。智能化需求目前主要体现在两个方面: 一方面是促生新的智能化应用,如自动驾驶汽车、虚拟现实和增强现实应用等,拓宽移动应用领域为用户提供更多应用选择。 另一方面是基于目前已有的大量应用数据进行智能化分析,在现有移动应用的基础上分析用户需求、明晰用户目标、提供用户感受,让用户在固有移动应用领域体验提升。 在智能化引领发展的阶段中,人工智能技术正在越来越广泛地应用在移动互联网领域,越来越多的人工智
边缘计算,也叫分布式计算相关、雾计算、多边计算,主要优势是在数据采集端或系统边缘端就完成了对海量设备数据的整合、分析和计算反馈。边缘计算能够节省通信带宽,降低网络延迟、减少了数据通信量,提高系统安全性保密性,以及更少依赖存储和算力资源,可以提高边缘设备的可靠性和控制力。
近年来,随着数据安全和隐私保护的要求越来越严格,数据孤岛的问题越来越严重,阻碍了AI模型训练的进一步发展,因此隐私计算相关的研究和实践逐渐成为了一个热门的方向。很多机构和学者投入到了隐私计算赛道中。在众多的隐私计算算法中,隐私保护逻辑回归算法是在实践中用的更多的,因为其简单性、鲁棒性、良好的可解释性等优势,它已经被广泛应用于广告点击率预测,信用违约模型和反欺诈等应用中。
当前,数据被称为“新时代的石油”,数据只有流动(共享)起来才能产生更大的价值。各个国家已经深刻认识到了数据的重要性,并开始通过立法手段保护数据安全,各大机构/企业再希望像以前一样,粗暴的、毫无底线的收集和共享数据越来越困难。这就导致,如何在保证各机构/企业/个人数据私密性的前提下,实现多方数据的联合查询、统计与建模,成为了数据处理领域新的研究方向。
在大规模图计算中,分布式计算的原理是通过将一个大规模图划分为多个子图,并将这些子图分配到不同的计算节点进行并行计算,最后将计算结果进行合并。分布式计算可以利用多台计算机的计算能力来加速图计算的过程,同时提高系统的可扩展性和容错性。
近期在考虑实现一个基于diff模式的笔记存储算法,具体是这样的:客户端触发存储逻辑时,首先会将文本T与前一次存储的文本S进行diff比较,生成一个patch,这个patch应用在文本S上,就能生成文本T,也因此,笔记的存储不再是单纯的将文本存在数据库中,而是一个类似于git的带有版本号的log,通过历史log生成最终的文本。
并行计算是一种计算方法,旨在通过同时执行多个计算任务来提高计算性能和效率。与传统的串行计算不同,其中每个任务按顺序执行,并行计算允许多个任务同时执行。这种并行性通常通过将计算任务分解为较小的子任务,然后在多个处理单元上同时执行这些子任务来实现。
XGBoost是一种强大的机器学习算法,但在处理大规模数据时,单节点的计算资源可能不足以满足需求。因此,分布式计算是必不可少的。本教程将介绍如何在Python中使用XGBoost进行分布式计算和大规模数据处理,包括设置分布式环境、使用分布式特征和训练大规模数据集等,并提供相应的代码示例。
具体来讲,本文首先介绍了分布式计算的基本概念,以及分布式计算如何用于深度学习。然后,列举了配置处理分布式应用的环境的标准需求(硬件和软件)。最后,为了提供亲身实践的经验,本文从理论角度和实现的角度演示了一个用于训练深度学习模型的分布式算法(同步随机梯度下降,synchronous SGD)。
Apache Flink(下简称Flink)项目是大数据处理领域最近冉冉升起的一颗新星,其不同于其他大数据项目的诸多特性吸引了越来越多人的关注。本文将深入分析Flink的一些关键技术与特性,希望能够帮助读者对Flink有更加深入的了解,对其他大数据系统开发者也能有所裨益。本文假设读者已对MapReduce、Spark及Storm等大数据处理框架有所了解,同时熟悉流处理与批处理的基本概念。 Flink简介 Flink核心是一个流式的数据流执行引擎,其针对数据流的分布式计算提供了数据分布、数据通信以及容错机制等
算法的关键性和优化算法的必要性是计算机科学和软件开发领域的核心概念。 算法的关键性:
本文介绍了Apache Flink在大数据处理中的优势,包括Apache Flink的设计、架构、运行原理、应用案例、部署方式、兼容性等方面,并探讨了如何将Apache Flink与Apache Storm进行比较。通过本文的介绍,可以帮助读者更好地了解Apache Flink,并掌握如何在实际项目中应用Apache Flink。
想必工作多年的研发工程师,有很多都是想成为架构师。但是并不是每一个研发都有机会参与架构设计,很多公司不一定会主动培养你成为架构师。但是我觉得要先掌握架构师的知识体系,然后通过实践进行校验,自己把自己培养成一名架构师。
在规划图系统时,需要综合考虑问题需求、数据存储和处理效率、系统可扩展性以及算法选择等因素,以达到性能高、资源消耗低和可扩展性强的目标。
数据从未像今天一样如此重要,但数据的流通却障碍重重。为了促进数据要素价值的安全流通,隐私计算应运而生。 艾瑞咨询去年发布的《中国隐私计算行业研究报告》显示,2021 年中国隐私计算市场规模为 4.9 亿元,预计至 2025 年将达到 145.1 亿元。 然而,对于从业者来说,上手隐私计算并不是一件容易的事情。业界根据过去几年的实践经验发现,隐私计算技术方向多样,不同场景下有其各自合适的技术解决方案,且涉及领域众多,需要多领域专家共同协作。在实际技术开发中,隐私计算解决方案也往往是多个技术路线的组合,过程中涉
以上是 Java 处理大型数据集的一些解决方案,每种解决方案都有适合的场景和使用范围。具体情况需要结合实际的业务需求来选择合适的方案。
本书示例代码适用于Python 3.5及以上。 ---- 当代第一台数字计算机诞生于上世纪30年代末40年代初(Konrad Zuse 1936年的Z1存在争议),也许比本书大多数读者都要早,比作者本人也要早。过去的七十年见证了计算机飞速地发展,计算机变得越来越快、越来越便宜,这在整个工业领域中是独一无二的。如今的手机,iPhone或是安卓,比20年前最快的电脑还要快。而且,计算机变得越来越小:过去的超级计算机能装下整间屋子,现在放在口袋里就行了。 这其中包括两个重要的发明。其一是主板上安装多块处理器(每个
工作一段时间会遇到一个瓶颈期,会考虑未来1到2年的发展和方向问题,之前的方式是通过不停的学习新的框架或者解决方案来调整。 比如写服务端代码期间会去学习TDD,DDD,CQRS代码逻辑层的东西,学前端框架等度过第一个阶段。 后来会去学习大型互联网架构的解决方案,什么负载均衡,分库分表,数据一致性的解决方案,并发的处理及解决策略,降级,静态化,缓存一致性,异步MQ。 这些了解大部分处于填鸭式学习,比如只是去了解市面上常见的中间件及软件的使用,并没有涉及到底层原理或者实现方式上,换句话说知道的只是名词,还未深入,
说起「数据中台」,很多人都不会感到陌生。但究竟如何定义「数据中台」?也许就会难倒一大批人了。
在面对大批量的数据处理任务的时候,Hadoop已经成为稳定高效的平台框架选择,Hadoop在大数据处理上得到重用,那么就代表着想要从事大数据行业的我们,也需要对于Hadoop有足够充分的认识和掌握,今天的Hadoop入门学习,为大家分享Hadoop的核心设计思想。
Leslie Lamport于1998年在他的论文《The Part-Time Parliament》中首次提出了Paxos算法,该算法旨在帮助分布式系统在面对网络分区、延迟和节点故障时,仍能达成一致。这个算法的名字来自希腊岛屿帕克索斯(Paxos),在那里传说中有个亚历克西斯(Alexis)与其他岛上的人达成了协议,这个故事与算法的设计目标密切相关。
随着互联网技术的发展和智能传感设备的普及,我们来到了一个数据爆炸的时代。全球的数据以每年50%的速度在增长,也就是说两年就增长了一倍。根据互联网数据中心(IDC)的预测,到2025年,全球数据总量将达到175ZB,与2010年相比,数据量增长了近170倍。
「多字段搜索」是一个非常复杂的话题,设想你有一堆日志记录,有很多字段。然后产品经理希望可以通过各种组合字段进行搜索,比如根据时间段、用户 ID、行为类型、目标 ID 等,得出满足条件的日志记录。
大家好,今天很高兴在这里与大家分享、探讨和学习分布式流处理技术。 本次分享首先回顾分布式流处理技术产生的背景以及技术演变历程; 其次介绍S4,Storm,SparkStreaming,Samza等几种
这两年,算力可以说是ICT行业的一个热门概念。在新闻报道和大咖演讲中,总会出现它的身影。
新世纪以来,互联网及个人终端的普及,传统行业的信息化及物联网的发展等产业变化产生了大量的数据,远远超出了单台机器能够处理的范围,分布式存储与处理成为唯一的选项。从2005年开始,Hadoop从最初Nutch项目的一部分,逐步发展成为目前最流行的大数据处理平台。Hadoop生态圈的各个项目,围绕着大数据的存储,计算,分析,展示,安全等各个方面,构建了一个完整的大数据生态系统,并有Cloudera,HortonWorks,MapR等数十家公司基于开源的Hadoop平台构建自己的商业模式,可以认为是最近十年来最成功的开源社区。
Hazelcast 是一个平台性的分布式内存网格计算框架引擎,可以实现基于分布式内存计算的诸多场景的应用框架 , 它作为一个开源可内嵌式内存网格计算框架,通过简单的配置, 就可以轻松的让你的应用拥有弹性可扩展的分布式内存计算能力,可以带你瞬间进入内存计算的时代。
分布式计算有很多研究问题:如何高效地为工作站分配计算任务;如何有效降低工作站间的通讯成本;如何确保单机和多机训练的收敛具有一致性等等。在 2016 年 TensorFlow 第一次支持分布式训练时,相比单 GPU 训练,其 100 块 GPU 只能提供 56 倍的加速。而随着各种分布式策略及技术的提出,这一加速倍数已经大大提升。
分布式的概念很早就有了,然而真正在企业中得以广泛应用却是最近几年的事情。互联网的深入深化及大数据应用的兴起,对于IT系统的处理能力及效率都提出了更高的要求。通过松散耦合将多台物理服务器组成一个集群,提供更大的计算能力,这是分布式的核心作用,也是其得以广泛应用的主要原因。 我们邀请数人云王璞老师,为我们分享他在分布式计算方面的深刻理解和独到见解。 遇见未来 未来数据中心的建设战略之分布式 1 作者及其团队介绍 王璞,数人云CEO及创始人,为美国George Mason大学计算机博士,擅长分布式计算、大规模机
MapReduce 适合批处理任务,也就是说每天对一个大量的静态数据集进行一次处理,同样,Spark 也非常的适合批处理任务,但是 Spark 有一个子模块就是 Spark Streaming 用于实时数据流处理
分布式机器学习也称分布式学习,是指利用多个计算节点(也称工作节点,Worker)进行机器学习或者深度学习的算法和系统,旨在提高性能、保护隐私,并可扩展至更大规模的训练数据和更大的模型。
为了满足基于内存的分布式计算思想,需要定义一种分布式计算抽象,保证在分布式环境中能够正确、高效地完成任务。
交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)是一种解决可分解凸优化问题的简单方法,尤其在解决大规模问题上卓有成效,利用ADMM算法可以将原问题的目标函数等价的分解成若干个可求解的子问题,然后并行求解每一个子问题,最后协调子问题的解得到原问题的全局解。ADMM 最早分别由 Glowinski & Marrocco 及 Gabay & Mercier 于 1975 年和 1976 年提出,并被 Boyd 等人于 2011 年重新综述并证明其适用于大规模分布式优化问题。由于 ADMM 的提出早于大规模分布式计算系统和大规模优化问题的出现,所以在 2011 年以前,这种方法并不广为人知。
现在虚拟货币大火,有研究的,起哄的,还有不明事理观望的。但是对于一个开发者或者研究者的角度来讲,无论外界如何喧闹。搞明白其内在的数学理论是一个最重要的事情,那论文就是一定绕不过去的坎。而其创始人“中本聪”的论文就应该是第一个。下面是一个翻译版,特别的我放上来。供大家学习使用。
图是信息科学中最常用的一类抽象数据结构,能够直观的表达现实世界中对象之间的真实关系。许多重要应用都需要用图结构表示,传统应用如最优运输路线的确定、疾病爆发路径的预测、科技文献的引用关系等;新兴应用如社交网络分析、语义 Web 分析、生物信息网络分析等,与图相关的处理和应用几乎无所不在 [1] 。
随着我国现代化工业的飞速发展,互联网、制造业、服务业等行业日益增多的数据无时无刻不在考验着国家信息化基础设施的承受能力以及调度能力。“东数西算”是在全国范围内实现算力和应用资源按需调度的基础设施工程,是以算力中心、数据中心、高速网络为基础设施,由云计算、大数据以及智能计算为核心技术构建的一体化新型算力网络体系。我国东部地区数据产生量大、数据密集、算力资源紧张,西部地区地域广袤,拥有比东部地区更丰富的可再生资源,充分利用西部地区的计算资源来高效执行东部地区有巨大计算需求的数据,能够在全国层面更高效地支撑以降低全社会能耗为目标的计算方式,更稳定地解决算力增长需求,实现绿色可持续发展。
分布式计算、云计算、人工智能 机器学习、深度学习、统计建模 这些最新的词汇大家应该都有所了解 但你真的了解这些词的意义吗? 一、机器学习 机器学习是以数据为基础,它专注于为回归和分类算法。其底层随机机制往往是次要的、不被重视的。当然,许多机器学习技术也可以通过随机模型和回归计算来定义,但数据并不是由模型生成的。相反,机器学习主要是为了辨识出运行某个特定任务的算法或技术(或者是二者兼有):顾客最好由k-Means聚类,或者是DBSCAN、决策树、随机森林,还是支持向量机? 简而言之,对统计学家来说,模型
可扩展性是指系统在需要增加规模或容量时,能够方便地进行扩展而不会影响系统性能或功能。
阅读目录: 介绍 利用分片算法 利用消息队列 Hadoop简介 MapReduce 离线计算 介绍 分布式计算简单来说,是把一个大计算任务拆分成多个小计算任务分布到若干台机器上去计算,然后再进行结果汇总。 目的在于分析计算海量的数据,从雷达监测的海量历史信号中分析异常信号(外星文明),淘宝双十一实时计算各地区的消费习惯等。 海量计算最开始的方案是提高单机计算性能,如大型机,后来由于数据的爆发式增长、单机性能却跟不上,才有分布式计算这种妥协方案。 因为计算一旦拆分,问题会变得非常复杂,像一致性、数据完整、通信
文 / 成杰峰,刘勤,李震国 本文为《程序员》原创文章,未经允许不得转载,更多精彩文章请订阅2016年《程序员》 挖掘大规模图数据能增强现有商业业务,甚至产生新的商业模式。然而,这些图数据的规模让图数据挖掘本身成为难题,这些突出的挑战都指向了发展具有高可扩展能力的大规模图计算处理的有效工具。本文先展开叙述图计算技术的几个核心层面,进而介绍华为诺亚方舟实验室的VENUS图计算系统,最后对图计算发展的趋势作简要展望。 背景 大量不同个体之间彼此交互产生的数据以图的形式表现,在通信、互联网、电子商务、社交网络和
近日,上映的科幻巨作《流浪地球2》中,拥有超强算力和自我意识的人工智能量子计算机MOSS让人惊叹。这台维系人类社会生存的“唯一核心工具”决定了人类的命运。影片中,MOSS满足上万台行星发动机的协同运作
分布式 TDSQL for MySQL 数据库是标准的 Share Nothing 架构数据库,支持数据水平拆分与线性扩展,具备高性能、数据高可用、数据高可靠等特性。本文主要介绍的是,我们在“分布式 TDSQL for MySQL”数据库新计算引擎架构上,分布式计算下推所做的主要工作。
大数据是近五年兴起的行业,发展迅速,很多技术经过这些年的迭代也变得比较成熟了,同时新的东西也不断涌现,想要保持自己竞争力的唯一办法就是不断学习。但是,大数据需要学习什么?
领取专属 10元无门槛券
手把手带您无忧上云