描述型分析:发生了什么?这是最常见的分析方法。在业务中,这种方法向数据分析师提供了重要指标和业务的衡量方法。
本文主要讲述数据挖掘分析领域中,最常用的四种数据分析方法:描述型分析、诊断型分析、预测型分析和指令型分析。
数字化时代,数据使用场景呈现多元化趋势,数据规模也随之爆发式增长。海量异构数据的爆发式增长,对数据库的存储和计算能力提出了更高的要求。分析型数据库因其在处理海量实时数据时具有优秀的存算和管理能力,近年来赢得了市场的青睐。
前言 阅读本文前,请先回答下面两个问题: 1. 数据库和数据仓库有什么区别? 2. 某大公司Hadoop Hive里的关系表不完全满足完整/参照性约束,也不完全满足范式要求,甚至第一范式都不满足。这种情况正常吗? 如果您不能五秒内给出答案,那么本文应该是对您有帮助的。 注:如果您还不清楚完整参照性约束,请参考《数据库关系建模》 :,如果您还不了解范式,请参考《更新异常与规范化设计》 。 数据库的"分家" 随着关系数据库理论的提出,诞生了一系列经典的RDBMS,如Oracle,MySQL,SQL Server
在数据仓库出现之前 , 上述两种处理类型都放在数据库中进行处理 , 其中分析性处理效果不好 , 因此提出不同的数据类型 , 放在不同的数据载体中 :
大数据价值的发现与其所处的应用场景密切相关。概括起来,大数据价值发现可以划分为三大类:数据服务、数据分析和数据探索。数据服务是面向大规模用户,提供高性能的数据查询、检索、预测等服务,通过直接满足用户需求而将数据价值变现的形式;数据分析是分析人员利用经验,通过对大规模数据使用特定的计算模型进行较为复杂的运算,从而发现易于人们理解的数据模式或规律所进行的数据价值变现的一种运算形式;数据探索是一种利用数据分析和人机交互的结合,通过不断揭示数据的规律和数据间的关联,引导分析人员发现并认识其所未知的数据模式或规律,其
[美]Peter Harrington. 机器学习实战 (图灵程序设计丛书 72)
“为啥我做的数据分析报告领导不满意?!”是困扰很多同学的问题。特别是,有时候领导会嫌弃“报告太细了,要有重点”。有时候领导又嫌弃:“太粗了,要细点”到底尺度是啥,该咋拿捏…… 问题的关键在于:数据分析报告,首先是一个报告,得有清晰的报告逻辑。至于数据,只是让报告更可信,更真实。那做报告到底有几种常见逻辑呢?根据一个人对报告内容的熟悉程度来分,有7种类型,一一介绍如下: 类型一:介绍型报告 介绍型报告适用于:向不了解情况的人,做第一次汇报时使用。介绍型报告一般采用总分式结构,分若干个角度进行介绍。比如介绍一
随着互联网及物联网等技术发展,越来越多的数据被生成,如何有效利用这些数据就成为了企业决胜的法宝了。大型公司会基于数据做出BI、推荐系统、决策支持、统计分析、报表等业务。
一个星型模型对应一个分析主题,它由一个事实表和一组维表组成。其中事实表是星型模型的核心,由分析变量和分析维度代理键组成,分析变量存放分析事实数 据,分析维度代理键用于连接维表。维表是星型模型的外围,存放分析维度数据,由维的代理键、维的层次属性、维的描述信息组成。
基于项目提供的汽车相关数据,通过聚类分析的方法实现汽车产品聚类,以构建汽车产品画像、分析产品定位、完成汽车竞品分析等要求。
聚类分析的实质:是建立一种分类方法,它能够将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类。这里所说的类就是一个具有相似性的个体的集合,不同类之间具有明显的区别。 聚类分析的特点:聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。
对于高维度的数据分析而言,例如RNA-seq的数据。我们在得到数据想要解释不同分组之间的差异的基因。往往都需要逐渐的降维来进行解释。最普遍的方法通过差异分析—富集分析这样的也算是一种逐步降维的操作。这样这样的分析,也有可能聚焦到很多个目标当中,比如一个通路当中有很多个基因。因为为了更好的解释高维度的数据,也就有了基因分型这样的分析方法。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/51757011
多维数组架构使用多维数组来存储数据,以提高查询和分析性能。例如,MOLAP(多维在线分析处理)数据库采用这种架构。
如今,随着诸如互联网以及物联网等技术的不断发展,越来越多的数据被生产出来-据统计,每天大约有超过2.5亿亿字节的各种各样数据产生。这些数据需要被存储起来并且能够被方便的分析和利用。 随着大数据技术的不断更新和迭代,数据管理工具得到了飞速的发展,相关概念如雨后春笋一般应运而生,如从最初决策支持系统(DSS)到商业智能(BI)、数据仓库、数据湖、数据中台等,这些概念特别容易混淆,本文对这些名词术语及内涵进行系统的解析,便于读者对数据平台相关的概念有全面的认识。
数据仓库理论的创始人W.H.Inmon在其《Building the Data Warehouse》一书中,给出了数据仓库的四个基本特征:面向主题,数据是集成的,数据是不可更新的,数据是随时间不断变化的。
数据科学最重要的内涵是用科学的方法来研究数据。数据科学是在数学、统计学、计算机科学等相关学科的支撑下对数据开展研究和应用的学科,它包括数据采集、数据管理、数据治理、数据分析、数据可视化、数据伦理和数据应用等数据处理全流程,其中,数据分析是对数据进行详细研究和概括总结,进而提炼有价值信息的过程。
数据处理是根据数据分析目的,将收集到的数据,用适当的处理方法进行加工、整理,形成适合数据分析的要求样式,它是数据分析前必不可少的工作,并且在整个数据分析工作量中占据了大部分比例。数据处理包括数据清洗、数据抽取、数据合并、数据计算、数据分组等操作。在进行数据处理之前,先要了解数据变量。
今天介绍一下单倍型分析,之前做GWAS分析时有同学问我单倍型分析相关的问题,当时我还不太会,知识性的东西,特别是软件操作类的东西,从来都是熟能生巧,研究一下,做一下项目,就会了。会了,就要写个教程,然后理解就更深了。
由于 X-squared=118.1,p-value<0.001,所以 拒绝原假设 H_0,接受 H_1,认为因素A和因素B不独立,
单细胞T细胞和B细胞抗原受体测序数据分析可以潜在地对适应性免疫细胞进行深入评估,从而为了解免疫细胞的发育提供信息,从而跟踪疾病和治疗中的克隆扩增。然而,由于数据的复杂性和潜在的生物学特性,在单细胞水平上分析和解释T细胞和B细胞及其适应性免疫受体谱一直是极具挑战性的。
数据探索时涉及到的三个函数为密度函数、分布函数与生存函数,其中样本的分布函数的形态、生存函数的形态基本没有太大变化,然而样本的密度函数分布形态却有着很大的差异,所以一般在进行数据分析领域提到分布时,指的都是直方图所描述的密度函数。
增强分析、持续型智能和可解释型人工智能(AI)是未来三到五年内数据和分析技术中最具颠覆性潜力的趋势。
组成的 完整的 “数据环境” ; 并在该 “数据环境” 上建立 和 进行 企业 或 组织 的从
R是现今最受欢迎的数据分析和可视化平台之一。它是自由的开源软件,并同时提供Windows、Mac OS X和Linux系统的版本。在接下来的时间,我将把掌握、精通这个软件所需的技能学习过程以系列文章的形式发表,记录我的学习过程,供大家参考,一起有效地使用它分析自己的数据。工欲善其事必先利其器,学习R语言数据分析,第一步自然是R安转。R可以在CRAN上免费下载,安装过程可以参考我前面的视频教程
GLM模型中,将每个SNP作为固定因子进行回归分析,进行显著性检验,P值就是GWAS分析的p-value,effect就是SNP的effect值。如果有其它因素需要考虑,就放到协变量里面,比如性别,PCA,Q矩阵等。
一是仅利用一些工具,对数据的特征进行查看;二是根据数据特征,感知数据价值,以决定是否需要对别的字段进行探索,或者决定如何加工这些字段以发挥数据分析的价值。字段的选取既需要技术手段的支撑,也需要数据分析者的经验和对解决问题的深入理解。
👆点击“博文视点Broadview”,获取更多书讯 用Python进行数据可视化你会用什么库来做呢? 今天就来和大家分享Python数据可视化库中的一员猛将——Altair! 它非常简单、友好,并基于强大的Vega-Lite JSON规范构建,我们只需要简短的代码即可生成美观、有效的可视化效果。 Altair是什么 Altair是统计可视化Python 库,目前在GitHub上已经收获超过3000 Star。 借助Altair,我们可以将更多的精力和时间放在理解数据本身及数据意义上,从复杂的数据可视化
对于每一种技术,先要理解相关的概念和它之所以出现的原因,这对于我们继续深入学习其技术细节大有裨益。实时数据仓库首先是个数据仓库,只是它优先考虑数据的时效性问题。因此本篇开头将介绍业界公认的数据仓库定义,它和操作型数据库应用的区别,以及为什么我们需要数据仓库。 在对数据仓库的概念有了基本的认识后,有必要单独说明一下ETL这个最重要的过程,然后向读者介绍四种常见的数据仓库架构。本篇最后描述实时数据仓库的产生背景、特定需求和使用场景,并列举一些常见的实时数据仓库技术架构。
探究变量之间的关系是数据挖掘中的一个基本分析内容,对于常规的离散型或者连续型变量,有很多的方法可以用于挖掘其中的关系,比如线性回归,逻辑回归等等。然而有一类数据非常的特殊,用回归分析等常用手段出处理这类数据并不合适,这类数据就是生存数据。
近年来,C端消费在线化渗透持续提升,全渠道消费成为常态,品牌商流量争夺愈发激烈。通过建设CDP(客户数据管理平台)实现对全渠道用户数据管理,从而实现精准获客、精细化用户运营,几乎成为业内的共识。
请点击上面“思影科技”四个字,选择关注我们,思影科技专注于脑影像数据处理,涵盖(fMRI,结构像,DTI,ASL,EEG/ERP,FNIRS,眼动)等,希望专业的内容可以给关注者带来帮助,欢迎留言讨论,也欢迎参加思影科技的其他课程。(文末点击浏览)
Comprehensive molecular and immunological characterization of hepatocellular carcinoma
一是以MATLAB、SPSS、Excel等为代表的具有界面化操作,且可编程辅助的软件式工具;一是以Python、R、Java等为代表的纯编程分析的程序语言式工具。
导语: 大数据时代,手握海量数据已是企业常态,而企业数据驱动文化不能止步于一群经过专门培训的分析师。如何充分利用数据并对其加以挖掘和利用才是赢在未来的王道。而企业在探索数据驱动的路上,找到相关人才至关重要。这篇文章总结了如何才能最高效率发掘数据驱动型潜力人才,通过人工智能、机器学习以及数据挖掘,帮助企业通过数据获得真正回报的最佳实践。 设定目标对数据驱动型企业至关重要。 招聘拥有分析思维的员工和招聘拥有特定技能的员工一样重要。 不必花费太多费用,但持续的培训却是必须。 和许多公司一样,能源巨头雪铁龙公司也
【背景】 我们正处在一个数据量爆发增长的时代。 在摩尔定律长达50年的支配下,当今的信息产业呈现出前所未有的繁荣,新的互联网技术不断涌现。从传统互联网的PC终端,到移动互联网的智能手机,再到物联网传感器,技术革新使数据生产能力呈指数级提升。据IDC预测,目前每年数据的生产量是8ZB(1ZB=1012GB),2020年将达到40ZB。属于大数据的时代已经到来。 数据产业有望呈现“线上数据化→线下数据化→数据流通“三段式发展过程。 1、线上数据化:互联网1.0时代,以互联网企业为代表,最早沉淀线上数据; 2
导语:随着云上应用的迅速发展,DT时代的到来,面对数智化、多场景情况下,我们如何做好数据库选型?
Seaborn 是 Python 中一个非常受用户欢迎的可视化库。Seaborn 在 Matplotlib 的基础上进行了更加高级的封装,用户能够使用极少的代码绘制出拥有丰富统计信息的科研论文配图。Seaborn 基于 Matplotlib,Matplotlib 中大多数绘图函数的参数都可在 Seaborn 绘图函数中使用,对 Python 的其他库(比如 Numpy/Pandas/Scipy)有很好的支持。
有同学问:用户流失该怎么分析?用户流失率的数据可以算,可算出来以后呢?只看数据似乎完全看不出什么流失原因,只知道用户已经X个月没有来了,也不知道看到这个能干啥。今天系统解答一下。
其中数据搜集和数据处理一般先在数据库中完成,也是数据分析关键的步骤。作为数据分析人员,我们首先要知道如何去获取数据,其中最常见的就是从关系型数据库中取数,因此你可以不会Python,不会R,但是你不能不会SQL。
该论文名为《Relationship between the ABO Blood Group and the COVID-19 Susceptibility》,论述了武汉金银潭医院、南方科技大学、上海交大、武汉中南医院等8家单位的最新研究成果——A、B、AB和O型这几种不同血型与新冠肺炎易感性存在的关联。
随着市场的逐步成熟,要想保持企业的长期竞争力,运营和产品改进工作需要越来越精细化。 比如,在游戏行业,玩家留存率是一个关键指标,为提升·留存率,需要精细化地分析玩家是哪一步流失的,根据游戏进程推进过程,按照先后顺序设置关键节点,分析各个节点流失情况数据,可以形成一个玩家流失漏斗。有了玩家流失漏斗,我们可以选择流失率高的环节进行进一步精细化分析,找到流失原因,比如机器适配问题,引导缺乏吸引力问题,数值设计问题等,根据这些原因就可以针对性的在产品和运营侧做改进了。 又比如保险行业,为了提高销售效率,可以先通过
数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,它用于支持企业或组织的决策分析处理。
我们机体可以抵御各种各样的病原菌,主要是由于T/ B细胞具有多种类型的受体TCR/BCR能识别不同种类的抗原。通过单细胞测序,可以推测TCR/BCR的种类和数量。今天王老师将为大家展示如何使用SeqGeq™软件来分析分析单细胞TCR/BCR测序数据。
本文是《维度建模》后续文章的基础。我们首先从宏观层面上考察数据仓库和商业智能(Data Warehousing and Business Intelligence,DW/BI)系统。DW/BI系统首先应该仔细考虑的问题是业务需求。《维度建模》系列文章将紧紧抓住业务需求这一要点,逐步深入探讨逻辑设计、物理设计以及采用有关技术和工具的决策等问题。
领取专属 10元无门槛券
手把手带您无忧上云