首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    比人类更强大的不是人工智能,而是掌握了人工智能的人类 | 科大讯飞年度发布会重磅发布三大板块、十项产品

    基于用户的需求开发出的产品,才能实现真正的应用赋能,带来价值。 11月9日,科大讯飞在北京国家会议中心举行了以“顶天立地,A.I.赋能”为题的2017年度发布会,会议中,他们通过应用案例和产品的发布来向大家展示科大讯飞如何在医学、教育等方面实现AI赋能,并展示科大讯飞为实现AI方向的三大布局(AI生态、AI教引和AI公益)所做出的努力和获得的阶段性成果。 当然本次发布会值得一提的亮点是,在发布会的最后,执行总裁胡郁向大家展示了用脑波控制智能家居的技术,至此实现了真正意义上的“解放全身”。 接下来,我们简单回

    00

    【Profinet专栏】关于结构化思维在PROFINET诊断中应用的思考

    【0. 前言】 工业4.0趋势下的机器故障诊断,正在向更智能化的预防性维护系统发展:通过构建覆盖设备上各个部件的传感器与通讯网络,几乎所有电动、气动、液压、机械元件的状态数据都能得到实时监控,由此可结合机器学习与大数据分析,再结合日趋完善的故障处理知识库与决策系统,实现对机器异常状态的实时感知,预测出可能的故障隐患点,第一时间通知用户并提供最优化的维护方案。那么,这是否就意味着,经典的基于人的经验的故障诊断,今后就毫无用武之地了呢? 【1.传统故障诊断的价值与局限性】 尽管拥有了越来越强大的诊断工具,人,依旧是当前故障诊断活动中的核心。因为故障诊断其实是一个非常复杂的活动,不单单面向机器,而且面向各种各样不同知识与社会背景的用户。这就要求诊断者不仅拥有丰富的机器故障处理经验,而且需要具备良好的沟通协作与社交能力,因此体现出一定的服务价值。但同时我们也必须承认,人在当前机器故障诊断中的局限性也越来越明显了,因为机器正变得越来越复杂,哪怕是经验再丰富的诊断者,在面对千奇百怪的疑难杂症时,也难免会遇到自身知识技能的盲点。所以很多长期从事现场诊断的工作者都会有相似的体验:当遇到一个前所未见的故障现象,苦思冥想无果,承受着各方的压力,感觉是苦恼的。这个时候,想要化解被动局面就变得难上加难,而想尽快获得支援也不是一件容易的事情,因为首先你要将这个连你自己都没搞清楚是怎么回事的问题,客观的描述出来,让别人充分了解你所处的困境、异常的内容与背景,才有可能引起对方的重视。那么如何突破这些困局?不妨试试结构化思维的方法。 【2.结构化思维有助于解决传统故障诊断遇到的难题】 在传统的基于人的经验的诊断过程中,除了对诊断者经验的过度依赖,还伴随着跳跃性思维所产生的一些不确定性因素。跳跃性思维,有时候能起到剑走偏锋出其不意的神奇效果,帮助人们在故障诊断中走出一条捷径,但是一旦计划落空其后果也是相当尴尬,可能会使诊断活动陷入停滞甚至混乱。当面对现场出现的疑难杂症,能够保持头脑冷静采用结构化思维,相对来说是个更加稳妥的选择。因为这样就能使我们从多个侧面进行思考,深刻分析导致问题出现的原因,系统性制定行动方案,采取性价比最优的手段,使诊断计划得以高效率开展,有助于使问题得到彻底解决,也有助于形成信息全面逻辑清晰的问题调研报告。下面以典型的工厂自动化项目中PROFINET通讯网络问题诊断为示例,推演结构化思维方法论在机器故障诊断活动的应用思路。 【3.1.结构化诊断步骤1:4W1H,充分理解面临的问题】 WHAT:故障的表面现象是什么?例如:用户看到的是某机电设备无法动作、生产线停机,但是更换备件仍不能修复,那就不是头痛医头脚痛医脚那样简单。搞清楚表象背后的本质是什么?例如:借助各种通讯工具(特别是远程访问软件)与现场联系,了解用户曾经做了什么,获取现场设备与控制器状态的照片与录像,获取报警信息与报错代码,如果发现设备本身功能是正常的,而有证据显示控制器曾经丢失与设备的网络连接与数据交换,那么就可以初步确认故障本质其实是现场总线/以太网通讯控制网络方面,或者是机器设备系统集成方面的问题。搞清楚该机器遵循的是什么行业的什么公司的什么标准?例如:某些重大自动化项目,在规划阶段就已经定义了通讯网络的协议与架构,具体到参数设置固件版本等细节都有明文规定,这些都是标准的一部分,事先需要充分了解。 WHEN:什么时候 / 每隔多长时间发生该故障?例如:长时间关机后再上电时 / 每次开机都有 / 周期性可人为重现 / 偶发但可人为重现 / 偶发且无法人为重现(这是最困难的一种情况,往往重启后又正常了,需要一直等到下一次发生类似故障时,保护好现场,做尽可能完整的故障记录表,才有可能进行下一步的原因分析)。 WHERE:故障点具体在哪里?

    02

    从概念到工具,一篇文章读懂UX数据分析的重要性【深度KPI】

    什么是分析学? 我们都知道,自互联网出现以来,它已经深刻地改变了我们,也改变了相关用户的行为。从一开始的用户输入网址到现在的依赖于搜索引擎进行搜索,从将所有的注意力放在一个界面到打开、浏览多个标签页,所有这一切使得网站或应用程序变得更加复杂。要衡量我们的设计,分析师不能仅仅简单地测量网络服务器上的点击率,他们必须分析用户的行为。 在收集信息、数据时,研究人员会根据情况采用定性或定量方法,或者二者相结合的方法。定性数据通过用户研究进行收集:观察人们的行为,了解他们为什么要做某些事情;而定量数据则通过测量、分析

    05

    OPPO 大数据诊断平台“罗盘”正式开源

    OPPO 大数据平台目前有 20+个服务组件,数据量超 1EB,离线任务数近百万,实时任务数千,数据开发分析师超千人。这也带来了系统复杂度的问题,一方面是用户经常对自己的任务运行状况“摸不着头脑”,不管是性能问题,还是参数配置问题,甚至是一些常见的权限报错问题,都需要咨询平台给出具体的解决方案;另一方面是平台面对各类繁杂任务,运维人员经常需要对任务故障定位和排除,由于任务链路长,组件日志多,运维压力大。因此急需对任务进行实时监控和诊断,不仅要能够帮助用户快速定位异常问题,还需给出具体的建议和优化方案,同时还能治理各类“僵尸”和不合理任务,从而达到降本增效的目的。据调研,目前业界尚无成熟的开源任务诊断平台。为此我们开发了大数据诊断平台,通过诊断平台周优化任务实例数超2 万,取得了良好的效果。

    02
    领券