导读:我们在数据处理时,要小心各种陷阱!人们习惯使用统计数据来简化事物描述,但错误的统计方法不仅不能反映事实,还会让数据变得毫无意义。
练习0: 1.修改部门编号为3的部门,部门名称改为”总办” 2.把市场部门删除掉 3.修改num在005以上所有人的支出比原来支出少20 (outcome=outcome-20) Update salary set outcome=outcome-20 where num>005 4.修改收入在2500以上的员工,收入比原来的收入多20
假设你老妈挺操心你单身狗的生活,怕你孤独而死。为了给你寻找优质的相亲对象,就把你的照片放到了相亲网站上。艾玛,这可好一下子吸引来200多个人留言,要与你“私定终身”。
我们很想窥探同事们的工资是多少,同时有忌讳同事知道自己的薪资,对于公司来说,也不想把每个人的工资待遇摆在明面上来。
在数据库操作中,NULL值的处理是一个常见而又重要的任务。NULL在数据库中代表缺失或未知的数据,因此在查询、计算和逻辑判断时,它可能会带来一些意想不到的结果。Oracle数据库提供了多种方法来处理NULL值,其中COALESCE函数是一个强大且优雅的工具。
多行函数:(聚合函数/分组函数) 解释:多条数据进入,单条结果出来(多进单出) 1).max(obj):最大值 2).min(obj):最小值 3).sum(num):求和 4).avg(num):求平均值 5).count(obj):计数 【注意事项】: 1).max()和min()两个函数可以接受任何数据类型的实际参数 2).sum()和avg()两个函数只能接受number类型的数据 3).多行函数/聚合函数/分组函数满足自动忽略空值的特点(在某些情况下,我们不应该忽略空值...) 案例如下: 查询公司薪资最高的、最低的、工资总和以及平均值的信息? select max(salary),min(salary),sum(salary),avg(salary) from employees; 参看如下代码并思考: select max(last_name),max(hire_date),min(last_name),min(hire_date) from employees; 关于count()的使用: 需求如下: 查询公司有多少员工? select count(employee_id),count(last_name),count(hire_date) from employees; select count(1),count(2),count(0),count(107),count('*') from employees; 执行以上代码发现效果都是正确的,我们以后做计数操作的时候,我们都用count('*')来实现; 查看如下代码: select count(department_id),count(commission_pct) from employees; 执行以上代码发现问题所在,只要是多行函数/聚合函数/分组函数满足自动忽略空值的特点 修改以上代码实现需要的效果: select count(nvl(department_id,100)),count(nvl(commission_pct,1)) from employees; 思考:avg() = sum() / count()? 答:以上的等式成立 需求如下: 查询公司的平均奖金率? select avg(commission_pct),sum(commission_pct) / count(commission_pct), sum(commission_pct) / count(nvl(commission_pct,2)), sum(commission_pct) / 107, sum(commission_pct) / count(*) from employees; 作业: --1.显示系统时间(注:日期+时间) select to_char(sysdate,'yyyy/mm/dd hh24:mi:ss') from dual; --2.查询员工号,姓名,工资,以及工资提高百分之20%后的结果(new salary) select employee_id,last_name,salary,salary * 1.2 "new salary" from employees; --3.将员工的姓名按首字母排序,并写出姓名的长度(length) select last_name,length(last_name) from employees order by last_name; --4.查询各员工的姓名,并显示出各员工在公司工作的月份数(worked_month)。 select last_name,round(months_between(sysdate,hire_date),0) "worked_month" from employees; --5.查询员工的姓名,以及在公司工作的月份数(worked_month),并按月份数降序排列 select last_name,round(months_between(sysdate,hire_date),0) "worked_month" from employees order by "worked_month" desc; --方式一: select last_name || ' earns $' || salary || ' monthly but wants $' || 3 * salary "Dream Salary" from employees; --方式二: select last_name || ' earns' || to_char(salary,'$99999') || ' monthly but wants' || to_char(3 * salary,'$99999') "
8 建立一个单一数字的评估指标 分类准确率是单一数字评估指标(single-number evaluation metric)的示例:你在你的开发集(或测试集)上运行你的分类器,然后得到样本分类正确的比例(fraction)(单个数字),根据这个指标,如果分类器A的准确率为97%,分类器B的准确率为90%,那么我们认为分类器A更好。 相比之下,精度(查准率)(Precision)和召回率(查全率)(Recall)[3]就不是一个单一数字的评估指标:它给出两个数字来评估分类器。拥有多个评估指标使得算法之间的
本文主要用Python爬取拉勾网不同编程语言职位信息,包括:Python岗、Java岗、C++岗、PHP岗、C#岗位(5岗);用R语言对影响薪资的因素进行分析。由于拉勾网的职位信息只显示30页,一页15个职位信息,如果单独爬取一个城市的岗位信息,只有几页是匹配的信息,信息量太小,分析没有说服力。因此,本文爬取拉勾网全国职位信息。主要三部分内容:
第二步:将第一步的表当作临时表与emp表做连接 连接条件e.deptno=t.deptno and e.sal=t.maxsal
ERROR 1055 (42000): Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column 'alpha.employee.id' which is not functionally dependent on columns in GROUP BY clause; this is incompatible with sql_mode=only_full_group_by
对上述原始数据,按照DEPARTMENT_ID(员工id)分组统计SALARY(薪水)的平均值。
在进行数据分析时,我们往往不会对原始的一条一条的数据直接进行分析,因为那毫无意义。通常,需要对数据先做一些聚合运算,比如求和、求平均值、计数等,也就是会用到一些分析指标和术语,这些指标和术语可以帮助我们打开思路,从多种角度对数据进行深度解读。
两个例子当中都使用了“平均”这个词,但是实际上有三种不同的方法来测定平均值,而且在大多数情况下,每种方法都会给出不同的数值。
绘制如下图形,展示部分城市平均收入与平均房价以及误差波动范围,其中数据均为演示数据,准确数据请查询相关网站。下图中每个柱的高度表示平均值,黑色竖线表示误差范围,竖线两端数字分别为最小值和最大值。
子查询是指在一个查询语句内部嵌套另一个查询语句的过程。子查询可以嵌套在 SELECT、FROM、WHERE 或 HAVING 子句中,用于从数据库中检索数据或执行其他操作。子查询通常返回一个结果集,该结果集可以被包含它的主查询使用。 以下是子查询的一般概述:
# ORDER BY price DESC 排序查询, DESC是降序 ASC是升序 默认 ASC -- 通过order by语句,可以将查询出的结果进行排序。放置在select语句的最后。 -- 格式: -- SELECT * FROM 表名 ORDER BY 排序字段ASC|DESC; -- ASC 升序 (默认) -- DESC 降序 SELECT pname,price FROM product ORDER BY price DESC; SELECT pid,pname,price
Oracle分析函数实际上操作对象是查询出的数据集,也就是说不需二次查询数据库,实际上就是oracle实现了一些我们自身需要编码实现的统计功能,对于简化开发工作量有很大的帮助,特别在开发第三方报表软件时是非常有帮助的。Oracle从8.1.6开始提供分析函数。
幸运的是,结合/融合/整合 (integration/ combination/ fusion)多个机器学习模型往往可以提高整体的预测能力。这是一种非常有效的提升手段,在多分类器系统(multi-classifier system)和集成学习(ensemble learning)中,融合都是最重要的一个步骤。
聚合函数是一类在数据库中用于对多个行进行计算并返回单个结果的函数。它们能够对数据进行汇总、统计和计算,常用于提取有关数据集的摘要信息。聚合函数在 SQL 查询中广泛应用,包括统计总数、平均值、最大值、最小值等。
分类准确率是单一数字评估指标(single-number evaluation metric)的示例:你在你的开发集(或测试集)上运行你的分类器,然后得到样本分类正确的比例(fraction)(单个数字),根据这个指标,如果分类器A的准确率为97%,分类器B的准确率为90%,那么我们认为分类器A更好。 相比之下,精度(查准率)(Precision)和召回率(查全率)(Recall)[3]就不是一个单一数字的评估指标:它给出两个数字来评估分类器。拥有多个评估指标使得算法之间的比较更加困难,假设你的算法表现如下:
用query方法检查是否存在BASE_SALARY高于MAX_DEPT_SALARY的行:
SQL 是用于数据分析和数据处理的最重要的编程语言之一,因此与数据科学相关的工作(例如数据分析师、数据科学家和数据工程师)在面试时总会问到关于 SQL 的问题。SQL 面试问题旨在评估应聘者的技术和解决问题的能力。因此对于应聘者来说,关键在于不仅要根据样本数据编写出正确的查询,而且还要像对待现实数据集一样考虑各种场景和边缘情况。
SQL是用于数据分析和数据处理的最重要的编程语言之一, 因此与数据科学相关的工作(例如数据分析师、数据科学家和数据工程师)在面试时总会问到关于 SQL 的问题。
语法: select 查询列表 ④ from 表名——————————① where 分组前条件—— ② group by 分组的字段③ having 分组后条件 ⑤ order by 排序列表 ⑥ 特点: 1、查询列表往往是:分组函数和分组后的字段 换句话说,和分组函数一同查询的字段,一般就是分组后的字段 2、分组查询的筛选有两种:分组前筛选和分组后筛选 连接关键字 位置 筛选的结果集 分组前筛选 where group by前面 原始表 分组后筛选 having group by后面 分组后的查询结果(虚拟表) 结论:分组函数做条件 肯定是 分组后筛选条件!!! 3、分组查询可以通过单个字段,也可以通过多个字段,中间用逗号隔开
Java 8引入了Stream API,它允许我们以声明的方式处理数据。此外,Stream还可以在不需要编写多线程代码的情况下使用多核架构。
select 中使用 group by 子句可以对指定列进行分组查询。需要满足:使用 group by 进行分组查 询时,select 指定的字段必须是“分组依据字段”,其他字段若想出现在 select 中则必须包含在聚合函 数中。
异常值是我们在数据分析中会经常遇到的一种特殊情况,所谓的异常值就是非正常数据。有的时候异常数据对我们是有用的,有的时候异常数据不仅对我们无用,反而会影响我们正常的分析结果。比如在分析银行欺诈案例时,核心就是要发现异常值,这个时候异常值对我们是有用的。再比如,在统计某个城市的平均收入的时候,有人月收入是好几个亿,这个时候这个人就是一个异常值,这个异常值会拉高城市的整体平均收入,因此可能会得到一个不真实的分析结果。
虚拟变量作为自变量,放在回归方程中在教科书里面讲的都很多,笔者以前在学习的时候觉得虚拟变量较之方差分析,还有更多惊喜。谢宇老师的《回归分析》书中对虚拟变量做了高度的总结与归纳。
今天继续跟大家分享:分层分析法。这个方法也非常简单实用,即可以弥补矩阵分析法的缺陷,又是用户分群,商品ABC分析的基础,很实用哦。
本文介绍并分析了 100 道常见 SQL 面试题,主要分为三个模块:SQL 初级查询、SQL 高级查询以及数据库设计与开发。
一般情况下k-Nearest Neighbor (KNN)都是用来解决分类的问题,其实KNN是一种可以应用于数据分类和预测的简单算法,本文中我们将它与简单的线性回归进行比较。
至于Mysql大家都很熟悉,很多公司因为人才储备和数据量大的原因,一般是Hadoop+Mysql的模式,Hadoop计算大量原始数据,然后按维度汇总后的展示数据存储在Mysql上,但是Mysql也有很多的“坑”:比如著名的Emoji表情坑,由此引申出来的utf8mb4的坑(隐式类型转换陷阱),性能低到发指的悲观锁机制,不支持多表单序列中取 id,不支持over子句,几乎没有性能可言的子查询........有点罄竹难书的意思,更多的“罪行”详见:见鬼的选择:Mysql。而这些问题,在PostgrelSQL中得到了改善,本次我们在Win10平台利用Docker安装PostgrelSQL,并且初步感受一下它的魅力。
小编在 9 月份参加了今年的数学建模,成绩怎么样不知道,能有个成功参与奖就不错了哈哈~
mAP:识别准确率 mAP在目标检测中用于判断识别的准确率,即用于衡量物品被检测出的概率,其跟以下两个指标有关: Precision(准确率):检测出的“物品有多少是真的物品 Recall(召回率):数据集中的物品有多少被检出 对于以上两个概念,将其置于标准二分类问题框架下有以下公式: $$ Precision = \cfrac{TP}{TP+FP} \\ Recall = \cfrac{TP}{TP+FN} $$ 对于以上,有: TP:正例,被识别为正例 FP:反例,被识别为正例 TN:反例,被识别为正
目前人工智能应用已经渗透到我们生活的方方面面,成为我们生活中重要的一部分。我们相信,随着机器学习技术的不断进步,未来有望产生一个能够感知、学习、做出决策和采取独立行动自主系统。但是,如果这些系统无法向人类解释为何作出这样的决策,那么它们的有效性将会受到限制。用户要理解,信任和管理这些人工智能“合作伙伴”,可解释AI则至关重要。
点击上方蓝色【一灯科技】,即可关注我们的公共号啦,吼吼~ 国内外程序员的工资水平是怎么样的?国内的各地程序员工资相差大不大呢?下面小编为你详细的介绍程序员工资相关情况,希望你喜欢。 想来 “薪
经济学家Daniel Hamermesh和Jeff Biddle的研究表明,一个容貌低于平均值的人,每小时少赚9%的薪水;而容貌高于平均值的人,每小时则多进账5%。
全面薪酬:员工从企业获得的所有收入,包括:现金收入、非现金收入、学习与发展的机会、工作环境,甚至企业知名度等。如公务员的基本工作不高,但全面薪酬比较高。
#4.like 'fdfdsf': parttern可以是%或_。 %表示任意多字符,_表示一个字符
各位朋友,新年好! 随着春节假期的结束,想必大家陆陆续续返回工作岗位,开始新的一年的拼搏。我也会继续努力,争取在深度学习方面更进一步,接下来,我将继续聊一聊深度学习在计算机视觉中的应用。
前些天在网上冲浪的时候看到一个案例咨询,问说世界500强的数据分析要不要去,评论区一片爆炸:“楼主能分享一下文科生怎么转行做数据分析吗??”、“SQL、python这些学起来好痛苦!”我看着屏幕苦笑,数据分析岗位现在的热门程度如果要形容的话,基本就是随便抓一个微博网友都知道这个岗位了。
https://github.com/SeafyLiang/Python_study
需求: 1 查询员工的总数 2 查看员工总薪水、最高薪水、最小薪水、薪水的平均值 3 查询薪水大于4000员工的个数 4 查询部门为’教学部’的所有员工的个数 5 查询部门为’市场部’所有员工的平均薪水
出现在其他语句中的select语句,称为子查询或内查询 外部出现的查询语句,称为主查或外查询
所谓组查询即将数据按照某列或者某些列相同的值进行分组,然后对该组的数据进行组函数运用,针对每一组返回一个结果。 tips: 1.组函数可以出现的位置: select子句和having 子句 2.使用group by 将将行划分成若干小组。 3.having子句用来限制组结果的返回。
人力资源的数据分析除了要掌握 人力资源的专业度以外,我们也需要了解一些数据和统计学的专业基础知识,特别是在薪酬的数据分析中,就会涉及到回归函数,相关性分析,指数函数等,在人力资源的数据分析中,有一个基础统计学的概念很多同学都会关注,就是离散度的分析,数据的离散度是来分析判断一组数据的稳定的关键指标,我们在人力资源的应用中,会用离散度里的方差,标准差等数据来分析员工的绩效稳定性,今天我们就来聊一聊数据的离散度。
示例:下表D:F列中,如果填充“完成”大于1个,则在G列返回达标,否则返回不达标。
机器学习训练秘籍笔记 1-12章 监督学习(supervised learning)是指使用已标记(labeled)的训练样本 来学习一个从 映射到 的函数。监督学习算法主要包括线性回归(linear regression)、对数几率回归(logistic regression,又译作逻辑回归)和神经网络(neural network)。虽然机器学习的形式有许多种,但当前具备实用价值的大部分机器学习算法都来自于监督学习。 训练集(training set)用于运行你的学习算法。 开发集(devel
数据分类是数据安全和数据合规体系建设的基石。无论是数据安全策略制定、数据合规性评估,还是事件响应处置和员工数据安全意识引导,都离不开对数据进行有效的标记和分类。通常所说的数据分类其实包括两部分事情,首先是数据识别,即需要知道数据是什么,如姓名、手机号、证券代码、金额、药品名称等;然后才是结合业务进行的分类,例如,进一步将姓名区分为用户信息,员工信息,或公开的企业信息等,药品名称区分为公开的药物说明信息、医嘱信息、个人疾病信息等。为了进行区分,我们把数据识别的结果称为标识,而数据分类的结果才称为类别。
领取专属 10元无门槛券
手把手带您无忧上云