一、题目 创建 50 行 50 列全零矩阵、全 1 矩阵、单位矩阵、对角矩阵,输出矩阵第 135 号元素。 二、解答 1....创建 50 行 50 列全 0 矩阵 >> m1 = zeros(50) %创建全0矩阵 >> >> disp(m1(135)) %显示135号元素 2....创建 50 行 50 列全 1 矩阵 >> m2 = ones(50) %创建全1矩阵 >> >> disp(m2(135)) %显示135号元素 3....创建 50 行 50 列单位矩阵 >> m3 = eye(50) %创建对角矩阵 >> >> disp(m3(135)) %显示135号元素 4....创建 50 行 50 列对角矩阵 >> v = ones(300,1) %创建全1向量 >> >> m4 = diag(v) %创建对角矩阵 >> >> disp(m4(135)) %显示135号元素
作为一只数学基础一般般的程序猿,有时候连怎么求逆矩阵都不记得,之前在wikiHow上看了一篇不错的讲解如何求3×3矩阵的逆矩阵的文章,特转载过来供大家查询以及自己备忘。...行列式的值通常显示为逆矩阵的分母值,如果行列式的值为零,说明矩阵不可逆。 什么?行列式怎么算也不记得了?我特意翻出了当年的数学课件。 好的,下面是第二步求出转置矩阵。...矩阵的转置体现在沿对角线作镜面反转,也就是将元素 (i,j) 与元素 (j,i) 互换。 第三步,求出每个2X2小矩阵的行列式的值。...第五步,由前面所求出的伴随矩阵除以第一步求出的行列式的值,从而得到逆矩阵。 注意,这个方法也可以应用于含变量或未知量的矩阵中,比如代数矩阵 M 和它的逆矩阵 M^-1 。...I 是单位阵,其对角线上的元素都为1,其余元素全为0。否则,你可能在某一步出了错。
啊啊啊,这么好的性质怎么做到啊?你先看上面的文章,给出对角化的条件: 矩阵A的所有特征值必须是实数。 每个特征值的几何重数必须等于代数重数。...如果对于一个方阵A,存在一个可逆矩阵P,使得P^(-1)AP是一个对角矩阵Λ,那么我们称矩阵A可以对角化。 其中: P:由A的特征向量组成的矩阵。 Λ:是一个对角矩阵,对角线上的元素就是A的特征值。...对角化的步骤: 求出矩阵A的特征值和特征向量。 将特征向量作为列向量组成矩阵P。 计算P的逆矩阵P^(-1)。 计算P^(-1)AP,得到对角矩阵Λ。...矩阵对角化就是把一个复杂的矩阵变换成一个对角矩阵的过程。 对角矩阵:就是一个对角线上有非零元素,其他位置都是零的矩阵。...理想的遥控器:每个按键只控制一个功能,而且这些功能之间互不影响。 矩阵对角化:就是找到这样一个最简单的遥控器。
矩阵对角线元素的和) https://leetcode-cn.com/problems/matrix-diagonal-sum/ 题目描述 给你一个正方形矩阵 mat,请你返回矩阵对角线元素的和。...请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。 ...示例 1: 输入:mat = [[1,2,3], [4,5,6], [7,8,9]] 输出:25 解释:对角线的和为:1 + 5 + 9 + 3 +
By 张旭 CaesarChang 合作 : root121toor@gmail.com 关注我 带你看更多好的技术知识和面试题 给你一个正方形矩阵 mat,请你返回矩阵对角线元素的和...请你返回在矩阵主对角线上的元素和副对角线上且不在主对角线上元素的和。...题解: 只需要注意[i][i ] 然后另一个对角线上慢的[i][n-i-1] 求和 class Solution { public int diagonalSum(int[]
二维数组的地址计算 (m*n的矩阵) 行优先 设每个元素的大小是size,首元素的地址是a[1][1],则a[i][j]?...1,1,1] + [(i-1)*n*m + (j-1)*n + (k-1)]*size 压缩存储:指为多个值相同的元素只分配一个存储空间,对零元素不分配存储空间,其目的是为了节省存储空间。...二维数组通常用来存储矩阵,特殊矩阵分为两类: (1)元素分布没有规律的矩阵,按照规律对用的公式实现压缩。 (2)无规律,但非零元素很少的稀疏矩阵,只存储非零元素实现压缩。...一、三角矩阵 包括上三角矩阵,下三角矩阵和对称矩阵 (1)若i矩阵为下三角矩阵。 (2)若i>j时,ai,j=0,则称此矩阵为上三角矩阵。...(3)若矩阵中的所有元素满足ai,j=aj,i,则称此矩阵为对称矩阵。 下三角 上三角 二、三对角矩阵 带状矩阵的压缩方法:将非零元素按照行优先存入一维数组。
/** * 获取矩阵两串对角线数字之和的差值 * * 1 2 3 * 4 5 6 * 7 8 9 * * 1+5+9=15; * 3+
由于只有主对角线上有非零元素,只需存储主对角线上的元素即可。 三角矩阵:指上三角或下三角的元素都为零的矩阵。同样地,只需存储其中一部分非零元素,可以节省存储空间。...对称矩阵:指矩阵中的元素关于主对角线对称的矩阵。由于对称矩阵的非零元素有一定的规律,可以只存储其中一部分元素,从而减少存储空间。 稀疏矩阵:指大部分元素为零的矩阵。...对角矩阵的压缩存储 对于一个n×n维的对角矩阵M,由于非主对角线上的元素都为零,只需存储其n个对角元素的值即可。...同时,在对角矩阵的运算中,由于非主对角线上的元素都为零,可以通过直接访问压缩后的数据来提高算法的效率。...; DiagonalMatrix 结构体定义了对角矩阵的结构,包括矩阵的维度 size 和存储对角元素的数组 diagonal。
此部分是对python List的扩展应用。...但可用来扩展列表的长度。...但经过如下测试, matrix[0][1] = 5 print(matrix) [[1, 5, 3], [1, 5,3], [1, 5, 3]] 发现,修改的是每个List的第二个元素。...发现matrix = [array] * 3操作中,只是创建3个指向array的引用,所以一旦array改变,matrix中3个list也会随之改变。 并根据文档提示,可用入下办法创建一个矩阵。...例如创建一个3*3的数组 方法1 直接定义 matrix = [[0, 0, 0], [0, 0, 0], [0, 0, 0]][/py] 方法2 间接定义 matrix = [[0 for i in
1.tf.matrix_diag(dia):输入参数是dia,如果输入时一个向量,那就生成二维的对角矩阵,以此类推2.tf.matrix_inverse(A):输入如果是一个矩阵,就是得到逆矩阵,依次类推...,只是输入的A中的元素需要是浮点数,比如tf.float32等格式,如果是整形,就会出错哈。...例如:矩阵(二维张量)import tensorflow as tf; A = [1, 2, 3]B = tf.matrix_diag(A)print B.eval(session=tf.Session
用go语言,已知一个n*n的01矩阵, 只能通过通过行交换、或者列交换的方式调整矩阵, 判断这个矩阵的对角线是否能全为1,如果能返回true,不能返回false。...我们升级一下: 已知一个n*n的01矩阵, 只能通过通过行交换、或者列交换的方式调整矩阵, 判断这个矩阵的对角线是否能全为1,如果不能打印-1。 如果能,打印需要交换的次数,并且打印怎么交换。...2.如果某一行或某一列的1的个数超过n/2(n为矩阵的大小),则无法通过交换操作使得对角线上的元素全为1,直接输出-1。...3.创建一个长度为n的数组rowOnes和colOnes,分别存储每行和每列的1的个数。 4.创建一个长度为n的二维数组swap,用于记录交换操作。...7.最后,检查矩阵的对角线是否全为1: • 逐行遍历矩阵,如果某一行的对角线元素不为1,则说明无法满足条件,输出-1。
今天和大家聊的问题叫做 包含全部黑色像素的最小矩阵,我们先来看题面: https://leetcode-cn.com/problems/smallest-rectangle-enclosing-black-pixels...图片在计算机处理中往往是使用二维矩阵来表示的。 假设,这里我们用的是一张黑白的图片,那么 0 代表白色像素,1 代表黑色像素。...其中黑色的像素他们相互连接,也就是说,图片中只会有一片连在一块儿的黑色像素(像素点是水平或竖直方向连接的)。...那么,给出某一个黑色像素点 (x, y) 的位置,你是否可以找出包含全部黑色像素的最小矩形(与坐标轴对齐)的面积呢? ?...,如果觉得有所收获,请顺手点个在看或者转发吧,你们的支持是我最大的动力 。
2025-08-15:按对角线进行矩阵排序。用go语言,给你一个 n × n 的整数矩阵,要求返回一个按下面规则调整后的矩阵: • 将每一条与主对角线平行的斜线视为一个序列。...• 对于位于主对角线之上的斜线(行索引 的方向把该斜线上的数按从小到大(非递增的相反:非递减)排列。 最终返回按上述方式重排后的矩阵。...识别所有对角线: • 矩阵中与主对角线平行的斜线共有2n-1条 • 每条斜线可以用k = i - j + n来唯一标识,其中k的范围是1到2n-1 • 当k=n时对应的是主对角线 2....分类处理对角线: • 对于每条斜线k: a. 计算该斜线在矩阵中的起始和结束位置 b. 收集该斜线上的所有元素 c. 根据斜线位置决定排序方式 d. 将排序后的元素放回原矩阵 3....回写排序结果: • 将排序后的元素按顺序写回原矩阵的对应位置 示例解析(以输入[[0,1],[1,2]]为例) 1.
前言 我们的数据可视化课程已经上线啦!!目前课程的主要方向是 科研、统计、地理相关的学术性图形绘制方法,后续也会增加商务插图、机器学等、数据分析等方面的课程。课程免费新增,这点绝对良心!...「corrmorant」-对角矩阵系列图表的正确打开方式~~ 之前介绍过R语言绘制对角矩阵系列统计图表的文章不是?!这种图一行代码就搞定了,超简单...。...今天继续给大家推荐一个个人感觉更好用的对角矩阵图表绘制工具-「corrmorant」。...corrmorant包介绍 corrmorant 对 ggplot2 进行了扩展,为相关性对角矩阵的绘图提供了一个自动化框架,这些相关矩阵可以通过常规的 ggplot2 语法轻松修改。...此外,它还为基于相关矩阵的探索性数据分析提供了大量可视化工具。
数据框数据框的创建数据框来源主要包括用代码新建(data.frame),由已有数据转换或处理得到(取子集、运算、合并等操作),读取表格文件(read.csv,read.table等)及R语言内置数据函数...data.frame生成指定数据框的列名及列的内容,如代码所示,此时列名不需添加"",df1为变量名,格式为列名=列的向量*matrix矩阵与向量一样只允许同一种数据类型,否则会被转换,可以理解为二维的向量...= ls())load(file = "soft.Rdata") #使Rdata中的向量出现在环境内,本身有名称,无需赋值矩阵和列表矩阵矩阵内所有元素数据类型必须相同*警惕因数据类型不同导致矩阵强制转换引起报错...#取子集方法同数据框t(m) #转置行与列,数据框转置后为矩阵as.data.frame(m) #将矩阵转换为数据框列表列表内有多个数据框或矩阵,可通过list函数将其组成一个列表l 矩阵,因此不能在这里使用class(y[,1])mean(as.numeric(y[,1]))#矩阵只允许一种数据类型,单独更改一列的数据类型没有意义,
接着,对矩阵吸收代码实现里的矩阵乘法的性质进行分析,可以看到MLA在大多数阶段都是计算密集型而非访存密集型的。...最后引用了作者团队的Benchmark结果,以及说明为何不是直接保存吸收后的大投影矩阵,而是在forward里面重新计算两个矩阵的吸收。...翻译: 这个修补过的DeepseekV2Model包含了对DeepseekV2Attention的以下修改,以减少VRAM消耗并提高效率: 不再缓存解压缩的Key/Value状态,而仅缓存低秩Key-Value...只需要缓存解耦后的 key 即可,当然还有上面的隐向量 ,因此对于单个 token 的 KV Cache 只包含 个元素,这里没考虑层数和bf16的字节数。...接着,对矩阵吸收代码实现里的矩阵乘法的性质进行分析,可以看到MLA在大多数阶段都是计算密集型而非访存密集型的。
相关系数矩阵(Correlation matrix)是数据分析的基本工具。它们让我们了解不同的变量是如何相互关联的。...在Python中,有很多个方法可以计算相关系数矩阵,今天我们来对这些方法进行一个总结 Pandas Pandas的DataFrame对象可以使用corr方法直接创建相关矩阵。...,在最后我们会有介绍 Numpy Numpy也包含了相关系数矩阵的计算函数,我们可以直接调用,但是因为返回的是ndarray,所以看起来没有pandas那么清晰。...( data.corr(), xnames=data.columns.tolist()) plotly 默认情况下plotly这个结果是如何从左下到右上运行对角线1.0的。...= sns.load_dataset('mpg') result = corr_full(df, rows=['corr', 'p-value']) result 总结 我们介绍了Python创建相关系数矩阵的各种方法
转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 目录 问题复现 原因分析 解决方案 碎碎念 问题复现 创建一个COO...格式的稀疏矩阵,根据计算公式,他应该只占用约5120MB的内存: 但通过nvidia-smi查看,实际上占用了10240MB: 网上对此的讨论又是没有找到,只好又是自己一点点摸索...因此,很明显这多出来的内存占用,实际上是reserved_bytes搞的。 活跃内存(Active Memory):指当前正在使用的显存量,包括已经分配并且正在使用的内存。...总的来说,保留的所有内存总量是由系统根据实时的内存使用情况和策略进行动态调整和触发的。它的目的是优化内存的分配和释放,以提高系统的性能和稳定性。...比如以下这个连续创建矩阵的,那么在创建第二个矩阵的时候,就不会再去申请新的内存,而是会放在保留内存里。
这种模型的目的是更好地模拟人体内癌症的特性,以进行更真实、更有效的药物测试和研究。 在建立PDX模型时,通常是将来自患者的肿瘤组织移植到小鼠中,这种肿瘤组织中包含了患者原发癌症的细胞。...上面演示的是保留人类基因名字的矩阵,简单的修改过滤的逻辑就是保留小鼠基因的表达量矩阵进行后续的降维聚类分群啦。...也可以是物种+病毒 前面的PDX模型(Patient-Derived Xenograft Model)是来源于多个物种的单细胞转录组表达量矩阵的典型例子, 其实类似的案例还有很多,比如各种癌症都有对应的病毒...进入Seurat流程进行降维聚类分群 还会有一个矩阵是保存了病毒的基因表达量矩阵,就可以做丰富的叠加可视化,在前面的umap的基础上面可以把这些病毒基因表达量含量作为细胞的列属性,而不是基因表达量的行...这个数据集是两个分组各自内部多个时间点,理论上可以做pseudo-bulk 分析,也是可以根据数据分析结果拿到一个独立的生物学故事。
acc=GSE123005 数据集,其实这个读者问问题的时候,应该是自己描述清楚这个链接,避免浪费我的时间去猜测它的数据集。...很诡异的表达矩阵。...但是我看了看,这个表达矩阵本身就各种冲突: ? 乱七八糟的表达量矩阵文件 可以看到,同样的基因,各种ID都是一致的,连坐标都一致,可是居然有两个截然不同的表达量。...不过呢,最后拿到了一个fpkm矩阵,我感觉也是鸡肋。 ?...还算是整齐的表达矩阵 这个时候大家需要自己去看文献找到其数据处理方式了,可以看到走的仍然是非常老套的tophat+Cufflinks 流程: Cufflinks identified and quantified