作者个人研发的在高并发场景下,提供的简单、稳定、可扩展的延迟消息队列框架,具有精准的定时任务和延迟队列处理功能。自开源半年多以来,已成功为十几家中小型企业提供了精准定时调度方案,经受住了生产环境的考验。为使更多童鞋受益,现给出开源框架地址:
本篇文章重点为大家讲解一下sql查询重复记录、删除重复记录具体方法,有需要的小伙伴可以参考一下。
平时工作中可能会遇到这种情况,当试图对表中的某一列或几列创建唯一索引时,系统提示ORA-01452 :不能创建唯一索引,发现重复记录。这个时候只能创建普通索引或者删除重复记录后再创建唯一索引。
我们可能会出现这种情况,某个表原来设计不周全,导致表里面的数据数据重复,那么,如何对重复的数据进行删除呢? 重复的数据可能有这样两种情况,第一种时表中只有某些字段一样,第二种是两行记录完全一样。 一、对于部分字段重复数据的删除 先来谈谈如何查询重复的数据吧。 下面语句可以查询出那些数据是重复的: select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1 将上面的>号改为=号就可以查询出没有重复的数据了。 想要删除这些重复的数据,可以使用下面语句进行删除 delete from 表名 a where 字段1,字段2 in (select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1) 上面的语句非常简单,就是将查询到的数据删除掉。不过这种删除执行的效率非常低,对于大数据量来说,可能会将数据库吊死。所以我建议先将查询到的重复的数据插入到一个临时表中,然后对进行删除,这样,执行删除的时候就不用再进行一次查询了。如下: CREATE TABLE 临时表 AS (select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1) 上面这句话就是建立了临时表,并将查询到的数据插入其中。 下面就可以进行这样的删除操作了: delete from 表名 a where 字段1,字段2 in (select 字段1,字段2 from 临时表); 这种先建临时表再进行删除的操作要比直接用一条语句进行删除要高效得多。 这个时候,大家可能会跳出来说,什么?你叫我们执行这种语句,那不是把所有重复的全都删除吗?而我们想保留重复数据中最新的一条记录啊!大家不要急,下面我就讲一下如何进行这种操作。 在oracle中,有个隐藏了自动rowid,里面给每条记录一个唯一的rowid,我们如果想保留最新的一条记录, 我们就可以利用这个字段,保留重复数据中rowid最大的一条记录就可以了。 下面是查询重复数据的一个例子: select a.rowid,a.* from 表名 a where a.rowid != ( select max(b.rowid) from 表名 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ) 下面我就来讲解一下,上面括号中的语句是查询出重复数据中rowid最大的一条记录。 而外面就是查询出除了rowid最大之外的其他重复的数据了。 由此,我们要删除重复数据,只保留最新的一条数据,就可以这样写了: delete from 表名 a where a.rowid != ( select max(b.rowid) from 表名 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ) 随便说一下,上面语句的执行效率是很低的,可以考虑建立临时表,讲需要判断重复的字段、rowid插入临时表中,然后删除的时候在进行比较。 create table 临时表 as select a.字段1,a.字段2,MAX(a.ROWID) dataid from 正式表 a GROUP BY a.字段1,a.字段2; delete from 表名 a where a.rowid != ( select b.dataid from 临时表 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ); commit; 二、对于完全重复记录的删除 对于表中两行记录完全一样的情况,可以用下面语句获取到去掉重复数据后的记录: select distinct * from 表名 可以将查询的记录放到临时表中,然后再将原来的表记录删除,最后将临时表的数据导回原来的表中。如下: CREATE TABLE 临时表 AS (select distinct * from 表名); truncate table 正式表; --注:原先由于笔误写成了drop table 正式表;,现在已经改正过来 insert into 正式表 (select * from 临时表); drop table 临时表;
SELECT * FROM t_info a WHERE ((SELECT COUNT(*) FROM t_info WHERE Title = a.Title) > 1) ORDER BY Title DESC
大家好上节介绍了汇总查询,继续介绍选择查询中的重复项查询和不匹配项查询,这两种查询都可以在查询向导中创建,本节主要介绍重复项查询。
SQL删除和替换语句 #统计重复链接个数 当count=1统计非重复的个数select link,count(*) as count from tableName group by link having count>1;Select * From 表 Where 重复字段 In (Select 重复字段 From 表 Group By 重复字段 Having Count(*)>1);#根据link判断 列出重复的记录SELECT id,name FROM tableName a WHERE ((SELEC
如果是小表,随便怎么折腾都行; 如果是大表(至少1千万条记录以上,或者占用10G以上空间), 我们可能需要想办法加快这个速度 , 这时可以参考下面方法:
where peopleId in (select peopleId from people group by peopleId having count(peopleId) > 1)
删除表中多余的重复记录,重复记录是根据单个字段(peopleId)来判断,只留有rowid最小的记录
今天还是数据分析的学习,如果你觉得文章太长太没意思,欢迎拉到底部直接看大纲总结,一秒学会(学不会我也不负责,让你不看全文)。
上一篇我们介绍了在有主键的表中删除重复数据,今天就介绍如何删除没有主键的表的重复数据。
有些 MySQL 数据表中可能存在重复的记录,有些情况我们允许重复数据的存在,但有时候我们也需要删除这些重复的数据。
在n条记录里,存在着些相同的记录,如何能用SQL语句,删除掉重复并保留一条呢?方法如下:
大家在项目开发过程中,数据库几乎是每一个后端开发者必备的技能,并且经常会遇到对于数据表重复数据的处理,一般需要去除重复保留最新的记录。今天这里给大家分享两种种方案,希望对大家日常开发能够提供一些帮助!
AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 随着业务数据的增长
这道题的目的是删除重复的节点,由于链表的头节点可能会被删除,因此我们需要额外使用一个哑节点(dummy node)指向链表的头节点,定义当前节点并把哑结点指向哑节点,cur.next 与 cur.next.next 不能为空才能进入循环,若 cur.next.val == cur.next.next.val 则说明重复,记录重复的值,用 while 跳过所有与记录的重复值相同的值;若不重复则当前值右移,最后返回 dummy.next 即删除重复值后链表的头节点。
sql DISTINCT去掉重复的数据统计方法(2009-01-13 15:05:43)转载 标签:sqldistinct杂谈 分类:sql
前段时间我踩过一个坑:在mysql8的一张innodb引擎的表中,加了唯一索引,但最后发现数据竟然还是重复了。
在Excel中,我们可以通过单击功能区“数据”选项卡上的“删除重复项”按钮“轻松”删除表中的重复项。确实很容易!然而,当数据集太大,或者电子表格中有公式时,这项操作有时会变得很慢。因此,我们将探讨如何使用Python从数据表中删除重复项,它超级简单、快速、灵活。
Excel数据处理,我们前文有了解到数据条的应用,行列转置,报错提醒,批量处理数据格式,多表输入相同表头,以及隐藏功能。那excel还有哪些数据处理方式供我们学习呢?我们继续往下看。
重复数据删除往往是指消除冗余子文件。不同于压缩,重复数据删除对于数据本身并没有改变,只是消除了相同的数据占用的存储容量。重复数据删除在减少存储、降低网络带宽方面有着显著的优势,并对扩展性有所帮助。
今天需要使用Django查询一列的字段(不含重复),搞了一上午,发现这样的事情:如图:
当表设计不规范或者应用程序的校验不够严谨时,就容易导致业务表产生重复数据。因此,学会高效地删除重复就显得尤为重要。
2、删除表中多余的重复记录,重复记录是根据单个字段(Id)来判断,只留有rowid最小的记录
所以,我们可以认为,生活中的字典就是记录的一堆: 【字】:【含义】 【字】:【含义】 ......
--创建测试表 if object_id('test') is not null drop table test create table test ( id int identity(1,1) primary key, name varchar(50) ) --插入几条测试数据 insert into test select 'a' union all select 'a' union all select 'a' union all select 'a' union all select 'a
为每一行数据添加锁,加锁慢,容易出现死锁竞争,因为锁的每一行数据,锁的力度小,所以并发高,Innodb支持行级锁,行级锁是支持事务的。
在数据库设计中,非规范化的关系模型会引发一些常见问题,包括数据冗余、更新异常、插入异常和删除异常。为了让这些概念更易于理解,我们可以把数据库中的数据比作一个超市的库存清单。让我们逐一解释这些问题,并举例说明它们的区别。
导语:在做多表数据汇总时,经常存在表头行重复的情况,处理这个问题往往需要根据实际情况选择不同的方法。
在上一篇文章中,我们讨论了 Hudi 查询类型及其与 Spark 的集成。在这篇文章中,我们将深入研究另一个方面——写入流程,以 Spark 作为示例引擎。在写入数据时可以调整多种配置和设置。因此这篇文章的目的并不是作为完整的使用指南。相反主要目标是呈现内部数据流并分解所涉及的步骤。这将使读者更深入地了解运行和微调 Hudi 应用程序。各种实际使用示例请查阅Hudi的官方文档页面。
学生信息管理系统是学习编程以来的处女座,无论好与坏,它都是菜鸟成长道路上最璀璨的启明星。
一般大家对数据库事务的了解可能停留在事务的ACID特性以及事务4种不同的隔离级别层面上,而对于事务 4 种不同隔离级别如何实现了解相对较少。
SQL如何删除重复数据 在使用数据库时,如何删除重复数据? 如图所示:用户表(user)数据 1、输入查询语句(查询name重复数据) select * from user where name in (select name from user group by name having count(name) > 1) 查询后,可以看到name叫“张三”的有3条数据。 可以使用distinct去重(返回不重复的用户名) select distinct name from user 查询后,
import pandas as pd #生成数据 data1,data2,data3,data4=['a',3],['b',2],['a',3],['c',2] df=pd.DataFrame([data1,data2,data3,data4],columns=['col1','col2']) print(df) col1 col2 0 a 3 1 b 2 2 a 3 3 c 2 #判断数据 isDuplicated=df.duplicat
通常情况下,当访问某张表的时候,读取者首先必须获取该表的锁,如果有写入操作到达,那么写入者一直等待读取者完成操作(查询开始之后就不能中断,因此允许读取者完成操作)。当读取者完成对表的操作的时候,锁就会被解除。如果写入者正在等待的时候,另一个读取操作到达了,该读取操作也会被阻塞(block),因为默认的调度策略是写入者优先于读取者。当第一个读取者完成操作并解放锁后,写入者开始操作,并且直到该写入者完成操作,第二个读取者才开始操作。因此:要提高MySQL的更新/插入效率,应首先考虑降低锁的竞争,减少写操作的等待时间。 (本专题在后面会讨论表设计的优化)本篇,要讲的优化是增删改。
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。
在不同隔离级别下,事务A会有哪些不同的返回结果,也就是图中的V1、V2、V3的返回值分别是什么。
MVCC是Multi-Version Concurrency Control(多版本并发控制)的缩写。
在缺失值的处理上,主要配合使用 sklearn.preprocessing 中的Imputer类、Pandas和Numpy。其中由于Pandas对于数据探索、分析和探查的支持较为良好,因此围绕Pandas的缺失值处理较为常用。
在数据库中,UNION和UNION ALL关键字都是将两个结果集合并为一个,但这两者从使用和效率上来说都有所不同。
在编程中,幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数指的是那些使用相同参数重复执行也能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。比如说getIdCard()函数和setTrue()函数就是幂等函数。
在我们的用例中1-10% 是对历史记录的更新。当记录更新时,我们需要从之前的 updated_date 分区中删除之前的条目,并将条目添加到最新的分区中,在没有删除和更新功能的情况下,我们必须重新读取整个历史表分区 -> 去重数据 -> 用新的去重数据覆盖整个表分区
InnoDB实现了多版本并发控制(MVCC),这意味着不同的用户将看到他们交互的数据的不同版本(有时称为快照,这是一个有点误导人的术语)。这样做是为了允许用户看到系统的一致视图,而不需要昂贵的、限制性能的锁,因为锁会限制并发性。(这就是“并发控制”部分的来源;另一种选择是锁定用户可能需要的所有内容。)undo log和InnoDB的“历史”系统是其实现MVCC的基础机制,但它的工作方式通常人们知之甚少。
领取专属 10元无门槛券
手把手带您无忧上云