首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

利用nlme软件包中的gls函数对空间自相关进行纠错

是一种统计建模方法,用于处理空间数据中存在的空间自相关(Spatial Autocorrelation)问题。gls函数是nlme软件包(Nonlinear Mixed-Effects Models)中的一个函数,用于拟合广义线性模型(Generalized Linear Models)和线性混合效应模型(Linear Mixed-Effects Models)。

空间自相关是指空间中相邻地点之间的观测值之间存在相关性。在空间数据分析中,空间自相关可能导致统计推断的失真,因此需要进行纠错。gls函数通过引入协方差结构来纠正空间自相关,从而提高模型的准确性和可靠性。

应用场景:

  • 地理信息系统(GIS)数据分析:在地理空间数据分析中,空间自相关是一个常见的问题,利用gls函数可以对空间自相关进行纠正,提高地理信息系统中的分析结果的准确性。
  • 自然资源管理:在自然资源管理领域中,利用gls函数可以处理空间数据中的空间自相关问题,例如对植被分布、水质分布等进行建模和预测。
  • 流行病学研究:在流行病学研究中,常常需要考虑空间因素对疾病传播的影响,利用gls函数可以对空间自相关进行修正,提高流行病模型的准确性。

腾讯云相关产品和产品介绍链接地址: 腾讯云提供了一系列云计算相关产品,其中与空间数据分析和统计建模相关的产品包括:

  • 腾讯云地理信息系统(GIS):提供了丰富的地理信息处理和空间数据分析功能,支持对空间自相关进行纠正和建模。详情请参考:腾讯云地理信息系统(GIS)
  • 腾讯云数据万象(Data Processing Service):提供了一系列数据处理和分析服务,支持对大规模空间数据进行处理和建模。详情请参考:腾讯云数据万象(Data Processing Service)

请注意,以上产品仅为示例,实际选择和推荐的产品应根据具体需求和情况进行评估。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Brain综述:整合直接电刺激与脑连接组学

    神经和神经发育疾病是一个主要的公共卫生问题,迫切需要新的治疗方法。有效疗法的发展依赖于对行为产生过程中涉及的神经底物的精确定位。在清醒手术中进行的认知和神经监测中进行的直接电刺激(Direct electrical stimulation, DES)目前被认为是脑功能因果关系映射的金标准。然而,DES受限于刺激位点的局限性,阻碍了在网络水平上对人脑功能的真正整体探索。我们使用了来自612例胶质瘤患者的4137个DES点,并结合人类脑连接组数据——静息态功能MRI (n = 1000)和扩散加权成像(n = 284)——来提供针对12个不同行为域的因果宏观功能网络的多模态描述。为了探讨我们的程序的有效性,我们(i)比较了健康人群和临床人群的网络地形;(ii)测试了DES衍生网络的预测能力;(iii)量化结构连接与功能连接之间的耦合;(iv)建立一个多元模型,能够量化单个受试者偏离正常人群的情况。最后,我们通过测试DES衍生的功能网络在识别与术后语言障碍相关的关键神经调控靶点和神经底物方面的特异性和敏感性,探索了其转译潜能。与单独使用DES相比,DES和人类连接组数据的组合使全脑覆盖率平均增加了29.4倍。DES衍生的功能网络可以预测未来的刺激点(准确率为97.8%),并得到皮层下刺激的解剖连接的有力支持。我们没有观察到患者和健康人群在组和单一受试者水平之间有任何显著的地形差异。在具体的临床应用中,我们发现DES衍生的功能网络在多个功能域与有效的神经调控靶点重叠,在使用不同刺激技术的颅内刺激点进行测试时显示出高度的特异性,并可有效地用于表征术后行为缺陷。DES与人类连接组的集成从根本上提高了DES或单独功能成像提供的功能映射的质量。DES衍生的功能网络可以可靠地预测未来的刺激点,与基础白质有很强的对应关系,可用于患者特异性的功能定位。可能的应用范围从精神病学和神经病学到神经心理学、神经外科和神经康复。

    01

    Biological Psychiatry综述:人脑成像转录组学的最佳实践

    现代全脑转录图谱为研究脑组织的分子相关性提供了前所未有的机会,可以使用无创神经成像进行量化。然而,将神经影像学数据与转录组测量相结合并不是直截了当的,需要仔细考虑才能做出有效的推断。在本文中,我们回顾了最近的研究工作,探讨了不同的方法选择如何影响成像转录组学分析的三个主要阶段,包括1)转录图谱数据的处理;2)将转录测量与独立衍生的神经影像学表型相关联;3)通过基因富集分析评估鉴定的关联的功能意义。我们的目标是为这个快速发展的领域促进标准化和可复制方法的发展。我们确定了方法可变性的来源,可能影响结果的关键选择,以及减轻假阳性和/或虚假结果的考虑因素。最后,我们提供了在所有3个分析阶段实现当前最佳实践过程的免费可用的开源工具箱的概述。

    01

    与内在功能连接个体变异性相关的基因表达

    研究表明,内在功能连接(FC)中的个体间变异性(ISV)与各种各样的认知和行为表现相关。然而,ISV在FC中的潜在组织原理及其相关基因转录谱尚不清楚。使用静息态功能磁共振成像数据从人类连接组计划(299年成人被试)和艾伦人类脑图谱的微阵列基因表达数据,我们进行了转录-神经成像关联研究调查内在的ISV的空间配置及其与空间基因转录谱的关联。我们发现,FC中多模态关联皮层的ISV最大,而单模态皮层和皮层下区域的ISV最小。重要的是,偏最小二乘回归分析显示,与人类加速区(HARs)相关的基因的转录谱可以解释FC中ISV空间分布的31.29%的变异。转录谱中的顶级相关基因在中枢神经系统的发育、神经发生和突触的细胞成分中得到了丰富。此外,我们还观察到,基因转录谱对FC中ISV的异质性分布的影响是由脑血流结构介导的。这些发现强调了ISV在FC中的空间排列,以及它们与转录谱和脑血流供应变化的耦合。

    03

    gis地理加权回归步骤_地理加权回归权重

    上一节我们讲了GLR广义线性回归,它是一种全局模型,可以构造出最佳描述研究区域中整体数据关系的方程。如果这些关系在研究区域中是一致的,则 GLR 回归方程可以对这些关系进行很好的建模。不过,当这些关系在研究区域的不同位置具有不同的表现形式时,回归方程在很大程度上为现有关系混合的平均值;如果这些关系表示两个极值,那么全局平均值将不能为任何一个极值构建出很好的模型。当解释变量表现出不稳定的关系(例如人口变量可能是研究中某些地区911呼叫量的重要影响因子,但在其他地区可能是较弱的影响因子,这就是不平稳的表现)时,全局模型通常会失效。

    04

    NC:皮层微结构的神经生理特征

    在整个皮层中观察到微结构的系统空间变化。这些微结构梯度反映在神经活动中,可以通过神经生理时间序列捕获。自发的神经生理动力学是如何在整个皮层组织的,以及它们是如何从异质皮层微结构中产生的,目前尚不清楚。在这里,我们通过估计来自静息状态脑磁图(MEG)信号的6800多个时间序列特征,广泛地描绘了整个人脑的区域神经生理动力学。然后,我们将区域时间序列概况映射到一个全面的多模式,多尺度的皮质微结构图谱,包括微观结构,代谢,神经递质受体,细胞类型和层流分化。我们发现神经生理动力学的主导轴反映了信号的功率谱密度和线性相关结构的特征,强调了电磁动力学的常规特征的重要性,同时识别了传统上较少受到关注的附加信息特征。此外,神经生理动力学的空间变化与多种微结构特征共定位,包括基因表达梯度、皮质髓鞘、神经递质受体和转运体、氧和葡萄糖代谢。总的来说,这项工作为研究神经活动的解剖学基础开辟了新的途径。

    05

    空间单细胞图谱揭示脊椎动物咽部器官的演化起源

    为了鉴定内层细胞成分和潜在的脊椎动物同源物,建立了单细胞分辨率的空间分辨图谱。scRNA-seq数据集由10017个有效细胞组成,使用Seurat工作流进行处理。初步定义了scRNA-seq数据集的细胞组成。多种细胞类型,包括免疫细胞、分泌性上皮细胞和血细胞,被发现具有细胞cluster特异性标记。对于Stereo-seq,通过空间条形码DNA纳米球(DNB)检测的表达谱与在文库构建中捕获的单链DNA染色光学图像对齐。根据不同的细胞分布特征,分别在组织密集区和稀疏区采用了方形划分和细胞分离两种细胞分离策略。使用这些方法,我们将DNB点分离成细胞unit,这代表了真实细胞形态的折衷反映。细胞分离后,在6个Stereo-seq切片中获得18371个细胞单位,并进行细胞类型注释。

    02
    领券