首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

加权有向图的广度优先搜索

是一种用于图遍历的算法,它可以在有向图中找到从起始顶点到目标顶点的最短路径。在广度优先搜索中,我们从起始顶点开始,逐层遍历图中的顶点,直到找到目标顶点或者遍历完所有可达的顶点。

在加权有向图中,每条边都有一个权重值,表示从一个顶点到另一个顶点的距离或代价。广度优先搜索算法会根据边的权重值来确定最短路径。

该算法的步骤如下:

  1. 创建一个空的队列,并将起始顶点入队。
  2. 创建一个空的集合,用于存储已经访问过的顶点。
  3. 创建一个空的字典,用于存储每个顶点的最短路径和距离。
  4. 将起始顶点的最短路径设为0,并将其距离设为0。
  5. 当队列不为空时,执行以下操作:
    • 出队一个顶点,并将其标记为已访问。
    • 遍历该顶点的所有邻居顶点:
      • 如果邻居顶点未被访问过,则将其入队,并更新其最短路径和距离。
      • 如果邻居顶点已被访问过,并且通过当前顶点的路径更短,则更新其最短路径和距离。
  • 返回目标顶点的最短路径和距离。

加权有向图的广度优先搜索算法可以应用于许多场景,例如路由算法、最短路径规划、社交网络分析等。

腾讯云提供了一系列与图计算相关的产品和服务,包括图数据库、图计算引擎等。其中,腾讯云图数据库 Neptune 是一种高性能、高可用的图数据库,适用于存储和处理大规模图数据。您可以通过以下链接了解更多关于腾讯云 Neptune 的信息:https://cloud.tencent.com/product/neptune

请注意,本回答仅提供了关于加权有向图的广度优先搜索的基本概念和一种相关的腾讯云产品,还有许多其他云计算相关的知识和产品可以探索和了解。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 数据结构与算法: 三十张图弄懂「图的两种遍历方式」

    遍历是指从某个节点出发,按照一定的的搜索路线,依次访问对数据结构中的全部节点,且每个节点仅访问一次。   在二叉树基础中,介绍了对于树的遍历。树的遍历是指从根节点出发,按照一定的访问规则,依次访问树的每个节点信息。树的遍历过程,根据访问规则的不同主要分为四种遍历方式:   (1)先序遍历   (2)中序遍历   (3)后序遍历   (4)层次遍历   类似的,图的遍历是指,从给定图中任意指定的顶点(称为初始点)出发,按照某种搜索方法沿着图的边访问图中的所有顶点,使每个顶点仅被访问一次,这个过程称为图的遍历。遍历过程中得到的顶点序列称为图遍历序列。   图的遍历过程中,根据搜索方法的不同,又可以划分为两种搜索策略:   (1)深度优先搜索(DFS,Depth First Search)   (2)广度优先搜索(BFS,Breadth First Search)

    02

    深度优先搜索遍历与广度优先搜索遍历

    1、图的遍历      和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。它是许多图的算法的基础。      深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。它们对无向图和有向图均适用。   注意:     以下假定遍历过程中访问顶点的操作是简单地输出顶点。 2、布尔向量visited[0..n-1]的设置      图中任一顶点都可能和其它顶点相邻接。在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。为了避免重复访问同一个顶点,必须记住每个已访问的顶点。为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。 深度优先遍历(Depth-First Traversal) 1.图的深度优先遍历的递归定义      假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。      图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。 2、深度优先搜索的过程      设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。此时,若x不是源点,则回溯到在x之前被访问过的顶点;否则图中所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若图G是连通图,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的搜索过程。 3、深度优先遍历的递归算法 (1)深度优先遍历算法   typedef enum{FALSE,TRUE}Boolean;//FALSE为0,TRUE为1   Boolean visited[MaxVertexNum]; //访问标志向量是全局量   void DFSTraverse(ALGraph *G)   { //深度优先遍历以邻接表表示的图G,而以邻接矩阵表示G时,算法完全与此相同     int i;     for(i=0;i<G->n;i++)       visited[i]=FALSE; //标志向量初始化     for(i=0;i<G->n;i++)       if(!visited[i]) //vi未访问过         DFS(G,i); //以vi为源点开始DFS搜索    }//DFSTraverse (2)邻接表表示的深度优先搜索算法   void DFS(ALGraph *G,int i){     //以vi为出发点对邻接表表示的图G进行深度优先搜索     EdgeNode *p;     printf("visit vertex:%c",G->adjlist[i].vertex);//访问顶点vi     visited[i]=TRUE; //标记vi已访问     p=G->adjlist[i].firstedge; //取vi边表的头指针     while(p){//依次搜索vi的邻接点vj,这里j=p->adjvex       if (!visited[p->adjvex])//若vi尚未被访问         DFS(G,p->adjvex);//则以Vj为出发点向纵深搜索       p=p->next; //找vi的下一邻接点      }    }//DFS (3)邻接矩阵表示的深度优先搜索算法   void DFSM(MGraph *G,int i)   { //以vi为出发点对邻接矩阵表示的图G进行DFS搜索,设邻接矩阵是0,l矩阵     int j;     printf("visit vertex:%c",G->vexs[i]);//访问顶点vi     visited[i]=TRUE;     for(j=0;j<G->n;j++) //依次搜索vi的邻接点       if(G->edges[i][j]==1&&!vi

    05
    领券